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Databases and Relations

Let us take a look at a type of database 
representation that is based on relations, namely the
relational data model.

A database consists of n-tuples called records, which 
are made up of fields.
These fields are the entries of the n-tuples.

The relational data model represents a database as 
an n-ary relation, that is, a set of records.
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Databases and Relations
Example: Consider a database of students, whose 
records are represented as 4-tuples with the fields 
Student Name, ID Number, Major, and GPA:

R = {(Ackermann, 231455, CS, 3.88),
(Adams, 888323, Physics, 3.45),
(Chou, 102147, CS, 3.79),
(Goodfriend, 453876, Math, 3.45),
(Rao, 678543, Math, 3.90),
(Stevens, 786576, Psych, 2.99)}

Relations that represent databases are also called 
tables, since they are often displayed as tables.

27 Oct 2015 CS 320 3

Databases and Relations
A domain of an n-ary relation is called a primary key
if the n-tuples are uniquely determined by their values 
from this domain.
This means that no two records have the same value 
from the same primary key.

In our example, which of the fields Student Name, ID 
Number, Major, and GPA are primary keys?

Student Name and ID Number are primary keys, 
because no two students have identical values in 
these fields.

In a real student database, only ID Number would be 
a primary key.

27 Oct 2015 CS 320 4

Databases and Relations
In a database, a primary key should remain one even 
if new records are added.
Therefore, we should use a primary key of the 
intension of the database, which contains all the n-
tuples that can ever be included in our database.

Combinations of domains can also uniquely identify 
n-tuples in an n-ary relation.
When the values of a set of domains determine an n-
tuple in a relation, the Cartesian product of these 
domains is called a composite key.
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Databases and Relations
We can apply a variety of operations on n-ary 
relations to form new relations.

Definition: The projection Pi1, i2, …, im
maps the n-

tuple (a1, a2, …, an) to the m-tuple (ai1
, ai2

, …, aim
), 

where m ≤ n.

In other words, a projection Pi1, i2, …, im
keeps the m 

components ai1
, ai2

, …, aim 
of an n-tuple and deletes 

its (n – m) other components.

Example: What is the result when we apply the 
projection P2,4 to the student record (Stevens, 786576, 
Psych, 2.99) ?
Solution: It is the pair (786576, 2.99).
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Databases and Relations

In some cases, applying a projection to an entire table 
may not only result in fewer columns, but also in 
fewer rows.

Why is that?

Some records may only have differed in those fields 
that were deleted, so they become identical, and 
there is no need to list identical records more than 
once.
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Databases and Relations
We can use the join operation to combine two tables 
into one if they share some identical fields.

Definition: Let R be a relation of degree m and S a 
relation of degree n. The join Jp(R, S), where p ≤ m 
and p ≤ n, is a relation of degree m + n – p that 
consists of all (m + n – p)-tuples 
(a1, a2, …, am-p, c1, c2, …, cp, b1, b2, …, bn-p),
where the m-tuple (a1, a2, …, am-p, c1, c2, …, cp) 
belongs to R and the n-tuple (c1, c2, …, cp, b1, b2, …, 
bn-p) belongs to S.
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Databases and Relations

In other words, to generate Jp(R, S), we have to find 
all the elements in R whose p last components match 
the p first components of an element in S.

The new relation contains exactly these matches, 
which are combined to tuples that contain each 
matching field only once.
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Databases and Relations
Example: What is J1(Y, R), where Y contains the 
fields Student Name and Year of Birth,
Y = {(1978, Ackermann),

(1972, Adams),
(1917, Chou),
(1984, Goodfriend),
(1982, Rao),
(1970, Stevens)},

and R contains the student records as defined before.
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Databases and Relations

Solution: The resulting relation is:
{(1978, Ackermann, 231455, CS, 3.88),
(1972, Adams, 888323, Physics, 3.45),
(1917, Chou, 102147, CS, 3.79),
(1984, Goodfriend, 453876, Math, 3.45),
(1982, Rao, 678543, Math, 3.90),
(1970, Stevens, 786576, Psych, 2.99)}

Since Y has two fields and R has four, the relation 
J1(Y, R) has 2 + 4 – 1 = 5 fields.
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Representing Relations
We already know different ways of representing 
relations. We will now take a closer look at two ways 
of representation: Zero-one matrices and directed 
graphs.
If R is a relation from A = {a1, a2, …, am} to 
B = {b1, b2, …, bn}, then R can be represented by the 
zero-one matrix MR = [mij] with
mij = 1,   if (ai, bj)∈R, and
mij = 0,  if (ai, bj)∉R.

Note that for creating this matrix we first need to list 
the elements in A and B in a particular, but arbitrary 
order.
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Representing Relations

Example: How can we represent the relation 
R = {(2, 1), (3, 1), (3, 2)} as a zero-one matrix?

Solution: The matrix MR is given by 
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Representing Relations
What do we know about the matrices representing a 
relation on a set (a relation from A to A) ?
They are square matrices.
What do we know about matrices representing 
reflexive relations?
All the elements on the diagonal of such matrices Mref
must be 1s.
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Representing Relations
What do we know about the matrices representing 
symmetric relations?
These matrices are symmetric, that is, MR = (MR)t.

symmetric matrix,
symmetric relation.

non-symmetric matrix,
non-symmetric relation.
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Representing Relations

The Boolean operations join and meet (you 
remember?) can be used to determine the matrices 
representing the union and the intersection of two 
relations, respectively.

To obtain the join of two zero-one matrices, we apply 
the Boolean “or” function to all corresponding elements 
in the matrices.

To obtain the meet of two zero-one matrices, we apply 
the Boolean “and” function to all corresponding 
elements in the matrices.
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Representing Relations
Example: Let the relations R and S be represented by 
the matrices

What are the matrices representing R∪S and R∩S?
Solution: These matrices are given by
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Representing Relations Using Matrices
Do you remember the Boolean product of two zero-
one matrices?

Let A = [aij] be an m×k zero-one matrix and 
B = [bij] be a k×n zero-one matrix.
Then the Boolean product of A and B, denoted by 
AοB, is the m×n matrix with (i, j)th entry [cij], where
cij = (ai1 ∧ b1j) ∨ (ai2 ∧ b2j) ∨ … ∨ (aik ∧ bkj). 

cij = 1 if and only if at least one of the terms
(ain ∧ bnj) = 1 for some n; otherwise cij = 0.
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Representing Relations Using Matrices
Let us now assume that the zero-one matrices 
MA = [aij], MB = [bij] and MC = [cij] represent relations A, 
B, and C, respectively.
Remember: For MC = MAοMB we have:
cij = 1 if and only if at least one of the terms
(ain ∧ bnj) = 1 for some n; otherwise cij = 0.
In terms of the relations, this means that C contains 
a pair (xi, zj) if and only if there is an element yn such 
that (xi, yn) is in relation A and 
(yn, zj) is in relation B.
Therefore, C = B°A  (composite of A and B).
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Representing Relations Using Matrices

This gives us the following rule:

MB°A = MAοMB

In other words, the matrix representing the 
composite of relations A and B is the Boolean 
product of the matrices representing A and B.

Analogously, we can find matrices representing the 
powers of relations:

MRn = MR
[n] (n-th Boolean power).
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Representing Relations Using Matrices
Example: Find the matrix representing R2, where the 
matrix representing R is given by

Solution: The matrix for R2 is given by
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Representing Relations Using Digraphs

Definition: A directed graph, or digraph, consists of 
a set V of vertices (or nodes) together with a set E of 
ordered pairs of elements of V called edges (or arcs).
The vertex a is called the initial vertex of the edge (a, 
b), and the vertex b is called the terminal vertex of 
this edge.

We can use arrows to display graphs.
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Representing Relations Using Digraphs
Example: Display the digraph with V = {a, b, c, d}, 
E = {(a, b), (a, d), (b, b), (b, d), (c, a), (c, b), (d, b)}.

a b

cd

An edge of the form (b, b) is called a loop.
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Representing Relations Using Digraphs
Obviously, we can represent any relation R on a set A 
by the digraph with A as its vertices and all pairs 
(a, b)∈R as its edges.

Vice versa, any digraph with vertices V and edges E 
can be represented by a relation on V containing all 
the pairs in E.

This one-to-one correspondence between relations 
and digraphs means that any statement about 
relations also applies to digraphs, and vice versa.
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Closures of Relations (section 9.4)

What is the closure of a relation? (sec. 9.4)

Definition: Let R be a relation on a set A. R may or 
may not have some property P, such as reflexivity, 
symmetry, or transitivity.
If there is a relation S with property P containing R
such that S is a subset of every relation with property 
P containing R, then S is called the closure of R with 
respect to P.

Note that the closure of a relation with respect to a 
property may not exist.



27 Oct 2015

5

27 Oct 2015 CS 320 25

Closures of Relations

If the closure of a relation R under a 
property P exists then this closure 
is the intersection of all relations 
with property P containing R.

The proof of this important fact is exercise 
14, p. 607 (exercise 14, p. 554, 6th ed.).
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Closures of Relations

An example where the closure might not 
exist is the property “the relation is 
infinite”.

Any finite relation R on Z x Z, e.g.
R = {(0,1), (0, 10)} does not have a 
closure under this infinite property.

No infinite relation containing R is 
contained in every infinite relation 
containing R.
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Closures of Relations 
Example I: Find the reflexive closure of relation 
R = {(1, 1), (1, 2), (2, 1), (3, 2)} on the set A = {1, 2, 3}.

Solution: We know that any reflexive relation on A 
must contain the elements (1, 1), (2, 2), and (3, 3).
By adding (2, 2) and (3, 3) to R, we obtain the 
reflexive relation S, which is given by
S = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 2), (3, 3)}.

S is reflexive, contains R, and is contained within 
every reflexive relation that contains R.

Therefore, S is the reflexive closure of R.
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Closures of Relations 

Example II: Find the symmetric closure of the 
relation R = {(a, b) | a > b} on the set of positive 
integers.

Solution: The symmetric closure of R is given by
R∪R-1 = {(a, b) | a > b} ∪ {(b, a) | a > b} 

= {(a, b) | a ≠ b}
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Closures of Relations 
Example III: Find the transitive closure of the relation 
R = {(1, 3), (1, 4), (2, 1), (3, 2)} on the set 
A = {1, 2, 3, 4}. 

Solution: R would be transitive, if for all pairs 
(a, b) and (b, c) in R there were also a pair (a, c) in R.
If we add the missing pairs (1, 2), (2, 3), (2, 4), and 
(3, 1), will R be transitive?
No, because the extended relation R contains (3, 1) 
and (1, 4), but does not contain (3, 4).
By adding new elements to R, we also add new 
requirements for its transitivity. We need to look 
at paths in digraphs to solve this problem.
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Closures of Relations 
Imagine that we have a relation R that represents all 
train connections in the US.
For example, if (Boston, Philadelphia) is in R, then 
there is a direct train connection from Boston to 
Philadelphia.
If R contains (Boston, Philadelphia) and (Philadelphia, 
Washington), there is an indirect connection from 
Boston to Washington.
Because there are indirect connections, it is not 
possible by just looking at R to determine which cities 
are connected by trains. 
The transitive closure of R contains exactly those pairs 
of cities that are connected, either directly or 
indirectly.
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Graphs and Relations 
Definition: A path from a to b in the directed graph G 
is a sequence of one or more edges (x0, x1), (x1, x2), 
(x2, x3), …, (xn-1, xn) in G, where x0 = a and xn = b.
In other words, a path is a sequence of edges where 
the terminal vertex of an edge is the same as the 
initial vertex of the next edge in the path.
This path is denoted by x0, x1, x2, …, xn and has 
length n.
A path that begins and ends at the same vertex is 
called a circuit or cycle.
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Graphs and Relations 
Example: Let us take a look at the following graph:

a b

cd
Is c,a,b,d,b a path in this graph? Yes.

Is d,b,b,b,d,b,d a circuit in this graph? Yes.

Is there any circuit including c in this graph? No.
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Graphs and Relations 
Due to the one-to-one correspondence between 
graphs and relations, we can transfer the definition of 
path from graphs to relations:

Definition: There is a path from a to b in a relation R, 
if there is a sequence of elements a, x1, x2, …, 
xn-1, b with (a, x1)∈R, (x1, x2)∈R, …, and (xn-1, b)∈R.

Theorem: Let R be a relation on a set A. There is a 
path from a to b of length n if and only if (a, b)∈Rn.
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Closures of Relations 
According to the train example, the transitive closure 
of a relation consists of the pairs of vertices in the 
associated directed graph that are connected by a 
path.
Definition: Let R be a relation on a set A. The 
connectivity relation R* consists of the pairs (a, b) 
such that there is a path between a and b in R. 

We know that Rn consists of the pairs (a, b) such that 
a and b are connected by a path of length n.
Therefore, R* is the union of Rn over all positive 
integers n:
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Closures of Relations 
Theorem: The transitive closure of a relation R equals 
the connectivity relation R*.

But how can we compute R* ?

Lemma: Let A be a set with n elements, and let R be 
a relation on A. If there is a path in R from a to b, then 
there is such a path with length not exceeding n.
Moreover, if a ≠ b and there is a path in R from a to b, 
then there is such a path with length not exceeding 
(n – 1).
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Closures of Relations 

This lemma is based on the observation that if a path 
from a to b visits any vertex more than once, it must 
include at least one circuit. 
These circuits can be eliminated from the path, and 
the reduced path will still connect a and b.

Theorem: For a relation R on a set A with n elements, 
the transitive closure R* is given by:
R* = R∪R2∪R3∪…∪Rn

For matrices representing relations we have:
MR* = MR∨MR

[2]∨MR
[3]∨…∨MR

[n]
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Closures of Relations 
Let us finally solve Example III by finding the 
transitive closure of the relation R = {(1, 3), (1, 4), (2, 
1), (3, 2)} on the set A = {1, 2, 3, 4}. 

R can be represented by the following matrix MR:
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Closures of Relations 
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Closures of Relations 

Solution: The transitive closure of the relation R = {(1, 
3), (1, 4), (2, 1), (3, 2)} on the set A = {1, 2, 3, 4} is 
given by the relation
{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4),
(3, 1), (3, 2), (3, 3), (3, 4)}
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Warshall’s Algorithm

A more efficient way of computing the 
transitive closure of a relation with 
digraph on vertices {v1,v2,…,vn}:

Theorem (p. 606). Let Wk=(wij
[k]) be the 

0,1 matrix wij
[k] = 1 iff there is a path 

from vi to vj with any interior vertices in 
the set {v1,v2,…vk}.  Then
wij

[k] = wij
[k-1] ∨ (wik

[k-1] ∧ wkj
[k-1])

W0 = WR, Wn = WR*.
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Proof:  We’ll use induction.
Base case: k=0. W0 = WR because there can be 

no  interior vertices, so just a single edge.
Induction step: If true for k-1, show 

wij
[k] = wij

[k-1] ∨ (wik
[k-1] ∧ wkj

[k-1])
because there is a path from vi to vj using 

interior vertices from {v1, v2,…,vk} iff
• There is a path without vk as an interior vertex 

(so wij
[k-1] = 1) or

• There is path with vk as an interior vertex, in 
which case both wik

[k-1] and wkj
[k-1] are 1.

(there must be a k-1path from vi to vk and 
from vk to vj)
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Using Warshall’s Algorithm

As shown in the book, the formula giving 
Warshall’s Algorithm easily translates to 
computer code.

If you do it by hand, just note that in wij
[k] = 

wij
[k-1] ∨ (wik

[k-1] ∧ wkj
[k-1]) you go from Wk-1

to Wk by looking at the matrix for Wk-1.  
If you can go from vi to vk in Wk-1 then in 
Wk you can add an entry ij if vk goes to 
vj in Wk-1.  (this is easier than it sounds)
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Transitive Closure 
via Warshall’s Algorithm


