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Warshall’s Algorithm

A more efficient way of computing the 
transitive closure of a relation with 
digraph on vertices {v1,v2,…,vn}:

Theorem (p. 606). Let Wk=(wij
[k]) be the 

0,1 matrix wij
[k] = 1 iff there is a path 

from vi to vj with any interior vertices in 
the set {v1,v2,…vk}.  Then
wij

[k] = wij
[k-1] ∨ (wik

[k-1] ∧ wkj
[k-1])

W0 = WR, Wn = WR*.
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Proof:  We’ll use induction.
Base case: k=0. W0 = WR because there can be 

no  interior vertices, so just a single edge.
Induction step: If true for k-1, show 

wij
[k] = wij

[k-1] ∨ (wik
[k-1] ∧ wkj

[k-1])
because there is a path from vi to vj using 

interior vertices from {v1, v2,…,vk} iff
• There is a path without vk as an interior vertex 

(so wij
[k-1] = 1) or

• There is path with vk as an interior vertex, in 
which case both wik

[k-1] and wkj
[k-1] are 1.

(there must be a k-1path from vi to vk and 
from vk to vj)
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Using Warshall’s Algorithm

As shown in the book, the formula giving 
Warshall’s Algorithm easily translates to 
computer code.

If you do it by hand, just note that in wij
[k] = 

wij
[k-1] ∨ (wik

[k-1] ∧ wkj
[k-1]) you go from Wk-1

to Wk by looking at the matrix for Wk-1.  
If you can go from vi to vk in Wk-1 then in 
Wk you can add an entry ij if vk goes to 
vj in Wk-1.  (this is easier than it sounds)
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Transitive Closure 
via Warshall’s Algorithm
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Equivalence Relations (Section 9.5) 

Equivalence relations are used to relate objects that 
are similar in some way.  (section 9.5)

Definition: A relation on a set A is called an 
equivalence relation if it is reflexive, symmetric, and 
transitive.

Two elements that are related by an equivalence 
relation R are called equivalent under that relation.

29 Oct 2015 CS 320 6

Equivalence Relations 

Since an equivalence relation R is symmetric, a is 
equivalent to b whenever b is equivalent to a.

Since R is reflexive, every element is equivalent to 
itself.

Since R is transitive, if a and b are equivalent and b 
and c are equivalent, then a and c are equivalent.

Obviously, these three properties are necessary for a 
reasonable definition of equivalence.



29 Oct 2015

2

29 Oct 2015 CS 320 7

Equivalence Relations 
Example: Suppose that R is the relation on the set of 
strings that consist of English letters such that 
aRb iff l(a) = l(b), where l(x) is the length of the string 
x. Is R an equivalence relation?
Solution:
• R is reflexive, because l(a) = l(a) and therefore 
aRa for any string a.

• R is symmetric, because if l(a) = l(b) then l(b) = 
l(a), so if aRb then bRa.

• R is transitive, because if l(a) = l(b) and l(b) = l(c), 
then l(a) = l(c), so aRb and bRc implies aRc.

R is an equivalence relation.
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Equivalence Classes 
Definition: Let R be an equivalence relation on 
a set A. The set of all elements that are related 
to an element a of A is called the equivalence 
class of a. 
The equivalence class of a with respect to R is 
denoted by [a]R.
When only one relation is under consideration, 
we will delete the subscript R and write [a] for 
this equivalence class.
If b∈[a]R, b is called a representative of this 
equivalence class.
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Equivalence Classes 

Example: In the previous example (strings of identical 
length), what is the equivalence class of the word 
mouse, denoted by [mouse] ?

Solution: [mouse] is the set of all English words 
containing five letters.

For example, ‘horse’ would be a representative of this 
equivalence class.
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Equivalence Classes 
Theorem: Let R be an equivalence 
relation on a set A. The following 
statements are equivalent:
(i) aRb (meaning (a,b) ϵ R)
(ii) [a] = [b]

(iii) [a] ∩ [b] ≠ ∅

Proof:  we’ll prove that (i) → (ii), (ii) → (iii), and 
(iii) → (i), when R is an equiv. relation
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(i) → (ii)
Suppose aRb. If x ∊ [a] then xRa, so 

xRb by transitivity, and x ∊ [b].  By 
symmetry, x ∊ [b] → x ∊ [a]

(ii) → (iii) if [a]=[b] then a ∊ [a] ∩ [b].

(iii) → (i)
Suppose x ∊ [a] ∩ [b]. Then xRa and xRb, 

so by symmetry aRx and xRb, so aRb
by transitivity.
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Equivalence Classes 

Definition: A partition of a set S is a 
collection of disjoint nonempty subsets of 
S that have S as their union. In other 
words, the collection of subsets Ai, 
i∈I, forms a partition of S if and only if 
(i)   Ai ≠ ∅ for i∈I
(ii) Ai ∩ Aj = ∅, if i ≠ j
(iii) ∪i∈I Ai = S
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Equivalence Classes 
Examples: Let S be the set {u, m, b, r, o, c, k, s}.
Do the following collections of sets partition S ?

{{m, o, c, k}, {r, u, b, s}} yes.

{{c, o, m, b}, {u, s}, {r}} no (k is missing).

{{b, r, o, c, k}, {m, u, s, t}} no (t is not in S).

{{u, m, b, r, o, c, k, s}} yes.

{{b, o, o, k}, {r, u, m}, {c, s}} yes ({b,o,o,k} = {b,o,k}).

{{u, m, b}, {r, o, c, k, s}, ∅} no (∅ not allowed).
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Equivalence Classes 

Theorem: Let R be an equivalence relation on a 
set S. Then the equivalence classes of R form a 
partition of S. Conversely, given a partition 
{Ai | i∈I} of the set S, there is an equivalence relation R 
that has the sets Ai, i∈I, as its equivalence classes.

This is typically used to identify elements regarded as 
equivalent.  The equivalence classes become the 
“points” of a new, smaller space.  
A typical example of this is forming Zn from Z under 
the equivalence relation aRb is a ≡ b (mod n).
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Equivalence Classes 
Example: Let us assume that Frank, Suzanne and 
George live in Boston, Stephanie and Max live in 
Lübeck, and Jennifer lives in Sydney. 
Let R be the equivalence relation {(a, b) | a and b live 
in the same city} on the set P = {Frank, Suzanne, 
George, Stephanie, Max, Jennifer}.

Then R = {(Frank, Frank), (Frank, Suzanne),
(Frank, George), (Suzanne, Frank), (Suzanne, Suzanne), 
(Suzanne, George), (George, Frank),
(George, Suzanne), (George, George), 
(Stephanie, Stephanie), (Stephanie, Max), (Max, Stephanie), 
(Max, Max), 
(Jennifer, Jennifer)}.
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Equivalence Classes 

And the equivalence classes of R are:
{{Frank, Suzanne, George}, {Stephanie, Max}, 
{Jennifer}}.
This is a partition of P.

The equivalence classes of any equivalence relation R 
defined on a set S constitute a partition of S, because 
every element in S is assigned to exactly one of the 
equivalence classes.
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Equivalence Classes 

Another example: Let R be the relation 
{(a, b) | a ≡ b (mod 3)} on the set of integers.
Is R an equivalence relation?
Yes, R is reflexive, symmetric, and transitive.

What are the equivalence classes of R ?
{{…, -6, -3, 0, 3, 6, …},
{…, -5, -2, 1, 4, 7, …},
{…, -4, -1, 2, 5, 8, …}}

29 Oct 2015 CS 320 18

The integers mod n

The relation a ≡ b (mod n) produces n 
distinct equivalence classes, [0], [1], …, 
[n-1].

We shorten their names to 0,1,…,n-1 and 
call the set of equivalence classes Zn 
the integers mod n.

We saw earlier that we can define + and * 
nicely on Zn, producing a nice finite 
arithmetic system.
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Arithmetic in Zn

• If a ≡ b (mod n) and c ≡ d (mod n) 
then a + c ≡ b + d (mod n).

• This shows we can define 
[u] + [v] = [u+v] and we’ll get the 
same answer no matter what 
representatives u and v we choose 
for the equivalence classes.
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Arithmetic in Zn

• If a ≡ b (mod n) and c ≡ d (mod n) 
then a*c ≡ b*d (mod n).

• This shows we can define 
[u] * [v] = [u*v] and we’ll get the 
same answer no matter what 
representatives u and v we choose 
for the equivalence classes.
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Arithmetic in Zn

• If a ≡ b (mod n) and c ≡ d (mod n) 
then a*c ≡ b*d (mod n).

• This shows we can define 
[u] * [v] = [u*v] and we’ll get the 
same answer no matter what 
representatives u and v we choose 
for the equivalence classes.
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Arithmetic in Zn

• 13 ≡ 76 (mod 7) and 2 ≡ 79 (mod 7)
and [13+2] = [15] = [1] = [76+79] = [155] 
in Z7, so we know 
[13] = [76] and [2] = [79] and 
[13 + 2] = [76 + 79].

• Thus we can define [13] + [2] = [15]
• In defining the sum we picked 13 and 2 

as representatives of the equivalence 
classes, but any representatives we 
picked would give the same answer.
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Multiplication in Z7

29 Oct 2015 CS 320 24

Partial Orderings  

Sometimes, relations do not specify the equality of 
elements in a set, but define an order on them.
Definition: A relation R on a set S is called a partial 
ordering or partial order if it is reflexive, 
antisymmetric, and transitive. 
A set S together with a partial ordering R is called a 
partially ordered set, or poset, and is denoted by 
(S, R).
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Partial Orderings  

Example: Consider the “greater than or equal” 
relation ≥ (defined by {(a, b) | a ≥ b}).
Is ≥ a partial ordering on the set of integers?
• ≥ is reflexive, because a ≥ a for every integer a.
• ≥ is antisymmetric, because if a ≠ b, then

a ≥ b ∧ b ≥ a is false.
• ≥ is transitive, because if a ≥ b and b ≥ c, then

a ≥ c.
Consequently, (Z, ≥) is a partially ordered set.
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Partial Orderings  

Another example: Is the “inclusion relation” ⊆
a partial ordering on the power set of a set S?
• ⊆ is reflexive, because A ⊆ A for every set A.
• ⊆ is antisymmetric, because if A ≠ B, then

A ⊆ B ∧ B ⊆ A is false.
• ⊆ is transitive, because if A ⊆ B and B ⊆ C, then

A ⊆ C.
Consequently, (P(S), ⊆) is a partially ordered set.
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Partial Orderings  

In a poset the notation a ≤ b denotes that (a, b)∈R.
Note that the symbol ≤ is used to denote the relation 
in any poset, not just the usual “less than or equal” 
relation in numbers.
The notation a < b denotes that a ≤ b, but a ≠ b.
If a < b we say “a is less than b” or “b is greater than 
a”.
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Partial Orderings  

For two elements a and b of a poset (S, ≤) it is 
possible that neither a ≤ b nor b ≤ a.
Example: In (P(Z), ⊆), {1, 2} is not related to {1, 3}, 
and vice versa, since neither is contained within 
the other.
Definition: The elements a and b of a poset (S, ≤) are 
called comparable if either a ≤ b or b ≤ a.
When a and b are elements of S such that neither 
a ≤ b nor b ≤ a, then a and b are called 
incomparable.
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Partial Orderings  

For some applications, we require all elements of a 
set to be comparable.
For example, if we want to write a dictionary, we need 
to define an order on all English words (alphabetic 
order).
Definition: If (S, ≤) is a poset and every two 
elements of S are comparable, S is called a totally 
ordered or linearly ordered set, and ≤ is called a 
total order or linear order. A totally ordered set is 
also called a chain.
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Partial Orderings  

Example I: Is (Z, ≤) a totally ordered poset?
Yes, because a ≤ b or b ≤ a for all integers a and b.

Example II: Is (Z+, |) a totally ordered poset?
No, because it contains incomparable elements such 
as 5 and 7.
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Lexicographic Order  
How can we define a lexicographic ordering on the 
set of English words?
This is a special case of an ordering of strings on a 
set constructed from a partial ordering on the set.
We already have an ordering of letters (such as 
a ≤ b, b ≤ c, …), and from that we want to derive an 
ordering of strings.
Let us take a look at the general case, that is, how 
the construction works in any poset.
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Lexicographic Order  
First step: Construct a partial ordering on the 
Cartesian product of two posets, (A1, ≤1) and 
(A2, ≤2):
(a1, a2) ≤ (b1, b2) if (a1 <1 b1) ∨ [(a1 = b1) ∧ (a2 ≤2 b2)]
Note:  this gives us also:
(a1, a2) < (b1, b2) if (a1 <1 b1) ∨ [(a1 = b1) ∧ (a2 <2 b2)]
Examples: In the poset (Z×Z, ≤), …

… is (5, 5) < (6, 4) ? yes.

… is (6, 5) < (6, 4) ? no.

… is (3, 3) < (3, 3) ? no.
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Lexicographic Order  
Second step: Extend the previous definition to the 
Cartesian product of n posets (A1, ≤1), (A2, ≤2), …, 
(An, ≤n):
(a1, a2,… , an) < (b1, b2,… , bn) 
if (a1 <1 b1) ∨

∃i>0 (a1 = b1, a2 = b2, …, ai = bi, ai+1 <i+1 bi+1)

Examples: Is (1, 1, 1, 2, 1) < (1, 1, 1, 1, 2)?
No.
Is (1, 1, 1, 1, 1) < (1, 1, 1, 1, 2)?
Yes.
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Lexicographic Order  
Final step: Define lexicographic ordering of strings:
Consider the strings a1a2…am and b1b2…bn on a 
partially ordered set S. Let t be the minimum of m and 
n. The definition of lexicographic ordering is that the 
string a1a2…am is less than b1b2…bn if and only if 
(a1, a2,… , at) < (b1, b2,… , bt) , for t = min(m, n), or
[(a1, a2,… , am) = (b1, b2,… , bm) ∧ m < n]
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Lexicographic Order  
Examples: If we apply this concept to lowercase 
English letters, …
… is discreet < discrete ?
Yes, because in the 7th position, e < t.
… is discreetness < discreet ?
No, because discreet is a prefix of discreetness.
… is discrete < discretion ?
Yes, because in the 8th position, e < i.
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Hasse Diagrams

The digraph of a partial order can be 
simplified to form a Hasse Diagram.

• We omit any edge (a,a)
• We omit any edge that can be deduced 

by transitivity.
• We draw the edge (a,b), a≤b, with a 

below b in the graph.
See the examples on pages 622 ff 

(6th ed. 572 ff.)
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Maximal & Minimal elements

An element a is minimal in a poset (S,≤) if 
there is no b with b<a.

An element a is maximal in a poset (S,≤) 
if there is no b with b>a.

Maximal (and minimal) elements are easy 
to spot in a Hasse diagram.

They are elements with nothing above (or 
below) them.
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Maximal & Minimal elements

a is the greatest element of a poset
(S,≤) if b≤a for all b ∊ S.

c is the least element of a poset (S,≤) 
if c≤b for all b ∊ S.

If a greatest or least element exists 
it must be unique.

(Make sure you can prove this fact).
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Upper Bound of a set A

If a ≤ u for all a∊A then u is an upper 
bound for A.

If u is an upper bound for A and u≤x
for every upper bound x for A then 
u is a least upper bound for A.

Not every set has an upper bound, for a 
general poset.
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Lower Bound for a set A

If v ≤ a for all a∊A then v is a lower 
bound for A.

If v is a lower bound for A and x≤v for 
every lower bound x for A then v is a 
greatest lower bound for A.

Not every set has a lower bound, for a 
general poset.

See the examples on pages 522, 523
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Lattices

A lattice is a poset in which every 
pair of elements has a least upper 
bound (lub) and a greatest lower 
bound (glb).

Lattices occur in lots of places and 
have a lot of known structure.

An example of a lattice is the poset 
of all subsets of a set U under ⊆.
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Topological Sort

Sometimes it’s convenient to derive a 
linear order or total order from a given 
partial order on a set.

This process is called topological sorting.
You can think of it as projecting a Hasse 

diagram horizontally onto a straight line 
so that no two vertices hit the same 
point on the line.
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Topological Sort
We can construct an algorithm to do this by 

noting that every non empty subset in a poset 
has a minimal element.

We can construct a linear order on a poset 
(S,⊆) by successively choosing a minimal 
element from the elements left.

These elements form an increasing sequence in 
the linear order ≤.

The linear order is compatible in that a⊆b 
guarantees that a≤b in the linear order.

The reverse is guaranteed only if ⊆ is linear.


