
29 Oct 2015

1

29 Oct 2015 CS 320 1

Warshall’s Algorithm

A more efficient way of computing the
transitive closure of a relation with
digraph on vertices {v1,v2,…,vn}:

Theorem (p. 606). Let Wk=(wij
[k]) be the

0,1 matrix wij
[k] = 1 iff there is a path

from vi to vj with any interior vertices in
the set {v1,v2,…vk}. Then
wij

[k] = wij
[k-1] ∨ (wik

[k-1] ∧ wkj
[k-1])

W0 = WR, Wn = WR*.
29 Oct 2015 CS 320 2

Proof: We’ll use induction.
Base case: k=0. W0 = WR because there can be

no interior vertices, so just a single edge.
Induction step: If true for k-1, show

wij
[k] = wij

[k-1] ∨ (wik
[k-1] ∧ wkj

[k-1])
because there is a path from vi to vj using

interior vertices from {v1, v2,…,vk} iff
• There is a path without vk as an interior vertex

(so wij
[k-1] = 1) or

• There is path with vk as an interior vertex, in
which case both wik

[k-1] and wkj
[k-1] are 1.

(there must be a k-1path from vi to vk and
from vk to vj)

29 Oct 2015 CS 320 3

Using Warshall’s Algorithm

As shown in the book, the formula giving
Warshall’s Algorithm easily translates to
computer code.

If you do it by hand, just note that in wij
[k] =

wij
[k-1] ∨ (wik

[k-1] ∧ wkj
[k-1]) you go from Wk-1

to Wk by looking at the matrix for Wk-1.
If you can go from vi to vk in Wk-1 then in
Wk you can add an entry ij if vk goes to
vj in Wk-1. (this is easier than it sounds)

29 Oct 2015 CS 320 4

Transitive Closure
via Warshall’s Algorithm

29 Oct 2015 CS 320 5

Equivalence Relations (Section 9.5)

Equivalence relations are used to relate objects that
are similar in some way. (section 9.5)

Definition: A relation on a set A is called an
equivalence relation if it is reflexive, symmetric, and
transitive.

Two elements that are related by an equivalence
relation R are called equivalent under that relation.

29 Oct 2015 CS 320 6

Equivalence Relations

Since an equivalence relation R is symmetric, a is
equivalent to b whenever b is equivalent to a.

Since R is reflexive, every element is equivalent to
itself.

Since R is transitive, if a and b are equivalent and b
and c are equivalent, then a and c are equivalent.

Obviously, these three properties are necessary for a
reasonable definition of equivalence.

29 Oct 2015

2

29 Oct 2015 CS 320 7

Equivalence Relations
Example: Suppose that R is the relation on the set of
strings that consist of English letters such that
aRb iff l(a) = l(b), where l(x) is the length of the string
x. Is R an equivalence relation?
Solution:
• R is reflexive, because l(a) = l(a) and therefore
aRa for any string a.

• R is symmetric, because if l(a) = l(b) then l(b) =
l(a), so if aRb then bRa.

• R is transitive, because if l(a) = l(b) and l(b) = l(c),
then l(a) = l(c), so aRb and bRc implies aRc.

R is an equivalence relation.
29 Oct 2015 CS 320 8

Equivalence Classes
Definition: Let R be an equivalence relation on
a set A. The set of all elements that are related
to an element a of A is called the equivalence
class of a.
The equivalence class of a with respect to R is
denoted by [a]R.
When only one relation is under consideration,
we will delete the subscript R and write [a] for
this equivalence class.
If b∈[a]R, b is called a representative of this
equivalence class.

29 Oct 2015 CS 320 9

Equivalence Classes

Example: In the previous example (strings of identical
length), what is the equivalence class of the word
mouse, denoted by [mouse] ?

Solution: [mouse] is the set of all English words
containing five letters.

For example, ‘horse’ would be a representative of this
equivalence class.

29 Oct 2015 CS 320 10

Equivalence Classes
Theorem: Let R be an equivalence
relation on a set A. The following
statements are equivalent:
(i) aRb (meaning (a,b) ϵ R)
(ii) [a] = [b]

(iii) [a] ∩ [b] ≠ ∅

Proof: we’ll prove that (i) → (ii), (ii) → (iii), and
(iii) → (i), when R is an equiv. relation

29 Oct 2015 CS 320 11

(i) → (ii)
Suppose aRb. If x ∊ [a] then xRa, so

xRb by transitivity, and x ∊ [b]. By
symmetry, x ∊ [b] → x ∊ [a]

(ii) → (iii) if [a]=[b] then a ∊ [a] ∩ [b].

(iii) → (i)
Suppose x ∊ [a] ∩ [b]. Then xRa and xRb,

so by symmetry aRx and xRb, so aRb
by transitivity.

29 Oct 2015 CS 320 12

Equivalence Classes

Definition: A partition of a set S is a
collection of disjoint nonempty subsets of
S that have S as their union. In other
words, the collection of subsets Ai,
i∈I, forms a partition of S if and only if
(i) Ai ≠ ∅ for i∈I
(ii) Ai ∩ Aj = ∅, if i ≠ j
(iii) ∪i∈I Ai = S

29 Oct 2015

3

29 Oct 2015 CS 320 13

Equivalence Classes
Examples: Let S be the set {u, m, b, r, o, c, k, s}.
Do the following collections of sets partition S ?

{{m, o, c, k}, {r, u, b, s}} yes.

{{c, o, m, b}, {u, s}, {r}} no (k is missing).

{{b, r, o, c, k}, {m, u, s, t}} no (t is not in S).

{{u, m, b, r, o, c, k, s}} yes.

{{b, o, o, k}, {r, u, m}, {c, s}} yes ({b,o,o,k} = {b,o,k}).

{{u, m, b}, {r, o, c, k, s}, ∅} no (∅ not allowed).
29 Oct 2015 CS 320 14

Equivalence Classes

Theorem: Let R be an equivalence relation on a
set S. Then the equivalence classes of R form a
partition of S. Conversely, given a partition
{Ai | i∈I} of the set S, there is an equivalence relation R
that has the sets Ai, i∈I, as its equivalence classes.

This is typically used to identify elements regarded as
equivalent. The equivalence classes become the
“points” of a new, smaller space.
A typical example of this is forming Zn from Z under
the equivalence relation aRb is a ≡ b (mod n).

29 Oct 2015 CS 320 15

Equivalence Classes
Example: Let us assume that Frank, Suzanne and
George live in Boston, Stephanie and Max live in
Lübeck, and Jennifer lives in Sydney.
Let R be the equivalence relation {(a, b) | a and b live
in the same city} on the set P = {Frank, Suzanne,
George, Stephanie, Max, Jennifer}.

Then R = {(Frank, Frank), (Frank, Suzanne),
(Frank, George), (Suzanne, Frank), (Suzanne, Suzanne),
(Suzanne, George), (George, Frank),
(George, Suzanne), (George, George),
(Stephanie, Stephanie), (Stephanie, Max), (Max, Stephanie),
(Max, Max),
(Jennifer, Jennifer)}.

29 Oct 2015 CS 320 16

Equivalence Classes

And the equivalence classes of R are:
{{Frank, Suzanne, George}, {Stephanie, Max},
{Jennifer}}.
This is a partition of P.

The equivalence classes of any equivalence relation R
defined on a set S constitute a partition of S, because
every element in S is assigned to exactly one of the
equivalence classes.

29 Oct 2015 CS 320 17

Equivalence Classes

Another example: Let R be the relation
{(a, b) | a ≡ b (mod 3)} on the set of integers.
Is R an equivalence relation?
Yes, R is reflexive, symmetric, and transitive.

What are the equivalence classes of R ?
{{…, -6, -3, 0, 3, 6, …},
{…, -5, -2, 1, 4, 7, …},
{…, -4, -1, 2, 5, 8, …}}

29 Oct 2015 CS 320 18

The integers mod n

The relation a ≡ b (mod n) produces n
distinct equivalence classes, [0], [1], …,
[n-1].

We shorten their names to 0,1,…,n-1 and
call the set of equivalence classes Zn
the integers mod n.

We saw earlier that we can define + and *
nicely on Zn, producing a nice finite
arithmetic system.

29 Oct 2015

4

29 Oct 2015 CS 320 19

Arithmetic in Zn

• If a ≡ b (mod n) and c ≡ d (mod n)
then a + c ≡ b + d (mod n).

• This shows we can define
[u] + [v] = [u+v] and we’ll get the
same answer no matter what
representatives u and v we choose
for the equivalence classes.

29 Oct 2015 CS 320 20

Arithmetic in Zn

• If a ≡ b (mod n) and c ≡ d (mod n)
then a*c ≡ b*d (mod n).

• This shows we can define
[u] * [v] = [u*v] and we’ll get the
same answer no matter what
representatives u and v we choose
for the equivalence classes.

29 Oct 2015 CS 320 21

Arithmetic in Zn

• If a ≡ b (mod n) and c ≡ d (mod n)
then a*c ≡ b*d (mod n).

• This shows we can define
[u] * [v] = [u*v] and we’ll get the
same answer no matter what
representatives u and v we choose
for the equivalence classes.

29 Oct 2015 CS 320 22

Arithmetic in Zn

• 13 ≡ 76 (mod 7) and 2 ≡ 79 (mod 7)
and [13+2] = [15] = [1] = [76+79] = [155]
in Z7, so we know
[13] = [76] and [2] = [79] and
[13 + 2] = [76 + 79].

• Thus we can define [13] + [2] = [15]
• In defining the sum we picked 13 and 2

as representatives of the equivalence
classes, but any representatives we
picked would give the same answer.

29 Oct 2015 CS 320 23

Multiplication in Z7

29 Oct 2015 CS 320 24

Partial Orderings

Sometimes, relations do not specify the equality of
elements in a set, but define an order on them.
Definition: A relation R on a set S is called a partial
ordering or partial order if it is reflexive,
antisymmetric, and transitive.
A set S together with a partial ordering R is called a
partially ordered set, or poset, and is denoted by
(S, R).

29 Oct 2015

5

29 Oct 2015 CS 320 25

Partial Orderings

Example: Consider the “greater than or equal”
relation ≥ (defined by {(a, b) | a ≥ b}).
Is ≥ a partial ordering on the set of integers?
• ≥ is reflexive, because a ≥ a for every integer a.
• ≥ is antisymmetric, because if a ≠ b, then

a ≥ b ∧ b ≥ a is false.
• ≥ is transitive, because if a ≥ b and b ≥ c, then

a ≥ c.
Consequently, (Z, ≥) is a partially ordered set.

29 Oct 2015 CS 320 26

Partial Orderings

Another example: Is the “inclusion relation” ⊆
a partial ordering on the power set of a set S?
• ⊆ is reflexive, because A ⊆ A for every set A.
• ⊆ is antisymmetric, because if A ≠ B, then

A ⊆ B ∧ B ⊆ A is false.
• ⊆ is transitive, because if A ⊆ B and B ⊆ C, then

A ⊆ C.
Consequently, (P(S), ⊆) is a partially ordered set.

29 Oct 2015 CS 320 27

Partial Orderings

In a poset the notation a ≤ b denotes that (a, b)∈R.
Note that the symbol ≤ is used to denote the relation
in any poset, not just the usual “less than or equal”
relation in numbers.
The notation a < b denotes that a ≤ b, but a ≠ b.
If a < b we say “a is less than b” or “b is greater than
a”.

29 Oct 2015 CS 320 28

Partial Orderings

For two elements a and b of a poset (S, ≤) it is
possible that neither a ≤ b nor b ≤ a.
Example: In (P(Z), ⊆), {1, 2} is not related to {1, 3},
and vice versa, since neither is contained within
the other.
Definition: The elements a and b of a poset (S, ≤) are
called comparable if either a ≤ b or b ≤ a.
When a and b are elements of S such that neither
a ≤ b nor b ≤ a, then a and b are called
incomparable.

29 Oct 2015 CS 320 29

Partial Orderings

For some applications, we require all elements of a
set to be comparable.
For example, if we want to write a dictionary, we need
to define an order on all English words (alphabetic
order).
Definition: If (S, ≤) is a poset and every two
elements of S are comparable, S is called a totally
ordered or linearly ordered set, and ≤ is called a
total order or linear order. A totally ordered set is
also called a chain.

29 Oct 2015 CS 320 30

Partial Orderings

Example I: Is (Z, ≤) a totally ordered poset?
Yes, because a ≤ b or b ≤ a for all integers a and b.

Example II: Is (Z+, |) a totally ordered poset?
No, because it contains incomparable elements such
as 5 and 7.

29 Oct 2015

6

29 Oct 2015 CS 320 31

Lexicographic Order
How can we define a lexicographic ordering on the
set of English words?
This is a special case of an ordering of strings on a
set constructed from a partial ordering on the set.
We already have an ordering of letters (such as
a ≤ b, b ≤ c, …), and from that we want to derive an
ordering of strings.
Let us take a look at the general case, that is, how
the construction works in any poset.

29 Oct 2015 CS 320 32

Lexicographic Order
First step: Construct a partial ordering on the
Cartesian product of two posets, (A1, ≤1) and
(A2, ≤2):
(a1, a2) ≤ (b1, b2) if (a1 <1 b1) ∨ [(a1 = b1) ∧ (a2 ≤2 b2)]
Note: this gives us also:
(a1, a2) < (b1, b2) if (a1 <1 b1) ∨ [(a1 = b1) ∧ (a2 <2 b2)]
Examples: In the poset (Z×Z, ≤), …

… is (5, 5) < (6, 4) ? yes.

… is (6, 5) < (6, 4) ? no.

… is (3, 3) < (3, 3) ? no.

29 Oct 2015 CS 320 33

Lexicographic Order
Second step: Extend the previous definition to the
Cartesian product of n posets (A1, ≤1), (A2, ≤2), …,
(An, ≤n):
(a1, a2,… , an) < (b1, b2,… , bn)
if (a1 <1 b1) ∨

∃i>0 (a1 = b1, a2 = b2, …, ai = bi, ai+1 <i+1 bi+1)

Examples: Is (1, 1, 1, 2, 1) < (1, 1, 1, 1, 2)?
No.
Is (1, 1, 1, 1, 1) < (1, 1, 1, 1, 2)?
Yes.

29 Oct 2015 CS 320 34

Lexicographic Order
Final step: Define lexicographic ordering of strings:
Consider the strings a1a2…am and b1b2…bn on a
partially ordered set S. Let t be the minimum of m and
n. The definition of lexicographic ordering is that the
string a1a2…am is less than b1b2…bn if and only if
(a1, a2,… , at) < (b1, b2,… , bt) , for t = min(m, n), or
[(a1, a2,… , am) = (b1, b2,… , bm) ∧ m < n]

29 Oct 2015 CS 320 35

Lexicographic Order
Examples: If we apply this concept to lowercase
English letters, …
… is discreet < discrete ?
Yes, because in the 7th position, e < t.
… is discreetness < discreet ?
No, because discreet is a prefix of discreetness.
… is discrete < discretion ?
Yes, because in the 8th position, e < i.

29 Oct 2015 CS 320 36

Hasse Diagrams

The digraph of a partial order can be
simplified to form a Hasse Diagram.

• We omit any edge (a,a)
• We omit any edge that can be deduced

by transitivity.
• We draw the edge (a,b), a≤b, with a

below b in the graph.
See the examples on pages 622 ff

(6th ed. 572 ff.)

29 Oct 2015

7

29 Oct 2015 CS 320 37

Maximal & Minimal elements

An element a is minimal in a poset (S,≤) if
there is no b with b<a.

An element a is maximal in a poset (S,≤)
if there is no b with b>a.

Maximal (and minimal) elements are easy
to spot in a Hasse diagram.

They are elements with nothing above (or
below) them.

29 Oct 2015 CS 320 38

Maximal & Minimal elements

a is the greatest element of a poset
(S,≤) if b≤a for all b ∊ S.

c is the least element of a poset (S,≤)
if c≤b for all b ∊ S.

If a greatest or least element exists
it must be unique.

(Make sure you can prove this fact).

29 Oct 2015 CS 320 39

Upper Bound of a set A

If a ≤ u for all a∊A then u is an upper
bound for A.

If u is an upper bound for A and u≤x
for every upper bound x for A then
u is a least upper bound for A.

Not every set has an upper bound, for a
general poset.

29 Oct 2015 CS 320 40

Lower Bound for a set A

If v ≤ a for all a∊A then v is a lower
bound for A.

If v is a lower bound for A and x≤v for
every lower bound x for A then v is a
greatest lower bound for A.

Not every set has a lower bound, for a
general poset.

See the examples on pages 522, 523

29 Oct 2015 CS 320 41

Lattices

A lattice is a poset in which every
pair of elements has a least upper
bound (lub) and a greatest lower
bound (glb).

Lattices occur in lots of places and
have a lot of known structure.

An example of a lattice is the poset
of all subsets of a set U under ⊆.

29 Oct 2015 CS 320 42

Topological Sort

Sometimes it’s convenient to derive a
linear order or total order from a given
partial order on a set.

This process is called topological sorting.
You can think of it as projecting a Hasse

diagram horizontally onto a straight line
so that no two vertices hit the same
point on the line.

29 Oct 2015

8

29 Oct 2015 CS 320 43

Topological Sort
We can construct an algorithm to do this by

noting that every non empty subset in a poset
has a minimal element.

We can construct a linear order on a poset
(S,⊆) by successively choosing a minimal
element from the elements left.

These elements form an increasing sequence in
the linear order ≤.

The linear order is compatible in that a⊆b
guarantees that a≤b in the linear order.

The reverse is guaranteed only if ⊆ is linear.

