

Equivalence Relations (Section 9.5)

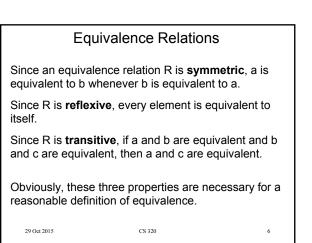
Equivalence relations are used to relate objects that are similar in some way. (section 9.5)

Definition: A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.

Two elements that are related by an equivalence relation R are called **equivalent** under that relation.

29 Oct 2015

CS 320



Equivalence Relations Example: Suppose that R is the relation on the set of strings that consist of English letters such that aRb iff I(a) = I(b), where I(x) is the length of the string x. Is R an equivalence relation? Solution: • R is reflexive, because I(a) = I(a) and therefore aRa for any string a. • R is symmetric, because if I(a) = I(b) then I(b) = I(a), so if aRb then bRa. • R is transitive, because if I(a) = I(b) and I(b) = I(c), then I(a) = I(c), so aRb and bRc implies aRc. R is an equivalence relation. 29 Oct 2015 CS 320 7

Equivalence Classes **Definition:** Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the **equivalence** class of a. The equivalence class of a with respect to R is denoted by [a]_R. When only one relation is under consideration, we will delete the subscript R and write [a] for this equivalence class. If $b \in [a]_R$, b is called a **representative** of this equivalence class. 29 Oct 2015 CS 320 8

Equivalence Classes Example: In the previous example (strings of identical length), what is the equivalence class of the word mouse, denoted by [mouse]? Solution: [mouse] is the set of all English words containing five letters. For example, 'horse' would be a representative of this equivalence class. 29 Oct 2015 CS 320

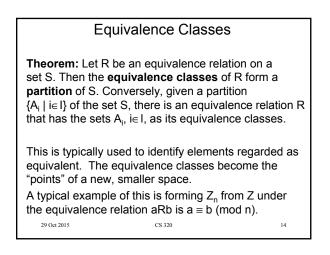
Equivalence Classes Theorem: Let R be an equivalence relation on a set A. The following statements are equivalent: (i) aRb (meaning (a,b) $\in R$) (ii) [a] = [b] (iii) [a] \cap [b] $\neq \emptyset$ Proof: we'll prove that (i) \rightarrow (ii), (ii) \rightarrow (iii), and (iii) \rightarrow (i), when R is an equiv. relation 29 Oct 2015 CS 320 10

 $(i) \rightarrow (ii)$ Suppose aRb. If $x \in [a]$ then xRa, so xRb by transitivity, and $x \in [b]$. By symmetry, $\mathbf{x} \in [b] \rightarrow \mathbf{x} \in [a]$ (ii) \rightarrow (iii) if [a]=[b] then a \in [a] \cap [b]. $(iii) \rightarrow (i)$ Suppose $x \in [a] \cap [b]$. Then xRa and xRb, so by symmetry aRx and xRb, so aRb by transitivity. CS 320 11

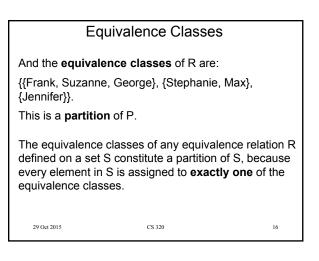
29 Oct 2015

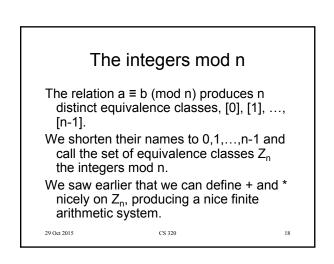
Equivalence Classes Definition: A partition of a set S is a collection of disjoint nonempty subsets of S that have S as their union. In other words, the collection of subsets A_i, i∈ I, forms a partition of S if and only if (i) $A_i \neq \emptyset$ for $i \in I$ (ii) $A_i \cap A_i = \emptyset$, if $i \neq j$ (iii) $\cup_{i \in I} A_i = S$ 29 Oct 2015 CS 320 12

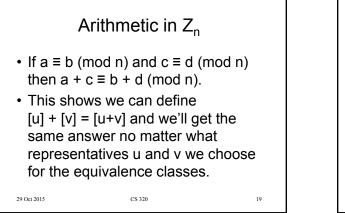
Equivalence Classes		
Examples: Let S be the set {u, m, b, r, o, c, k, s}. Do the following collections of sets partition S ?		
{{m, o, c, k}, {r, u, b, s}}	yes.	
{{c, o, m, b}, {u, s}, {r}}	no (k is missing).	
{{b, r, o, c, k}, {m, u, s, t}}	no (t is not in S).	
{{u, m, b, r, o, c, k, s}}	yes.	
{{b, o, o, k}, {r, u, m}, {c, s}}	yes $(\{b, o, o, k\} = \{b, o, k\})$.	
{{u, m, b}, {r, o, c, k, s}, Ø}	no (Ø not allowed).	

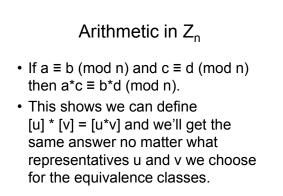


Equ	ivalence Class	ses
George live in Bos	assume that Frank, ston, Stephanie and ifer lives in Sydney	d Max live in
	valence relation { on the set P = {Frar e, Max, Jennifer}.	
	ank), (Frank, Suzanne zanne, Frank), (Suzar (George, Frank), (George, George),	
(Stephanie, Stephan (Max, Max),	ie), (Stephanie, Max),	(Max, Stephanie),
(Jennifer, Jennifer)}.		
29 Oct 2015	CS 320	15





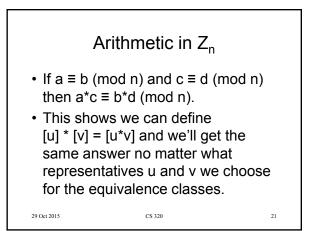


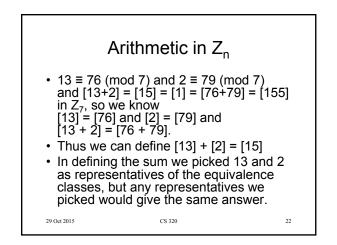


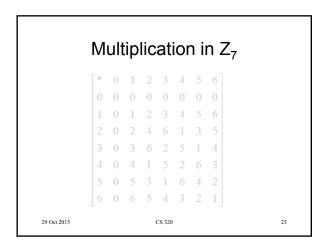
CS 320

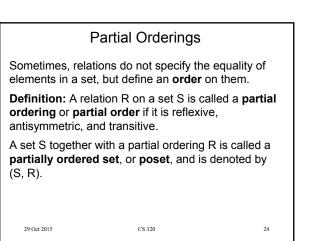
20

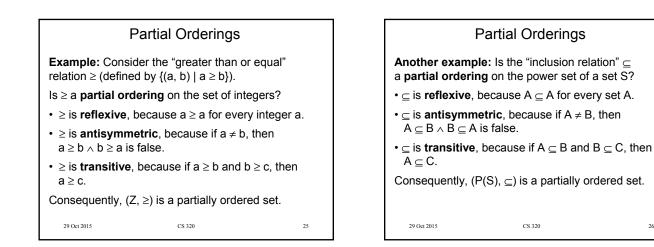
29 Oct 2015

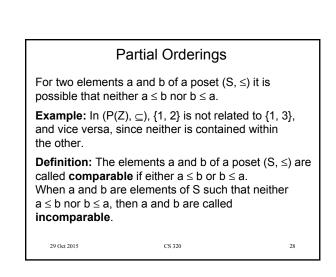












26

Partial Orderings

Partial Orderings

In a poset the notation $a \le b$ denotes that $(a, b) \in \mathbb{R}$.

in any poset, not just the usual "less than or equal"

If a < b we say "a is less than b" or "b is greater than

CS 320

27

29

The notation a < b denotes that $a \le b$, but $a \ne b$.

relation in numbers.

a".

29 Oct 2015

Note that the symbol \leq is used to denote the relation

For some applications, we require all elements of a set to be comparable.

For example, if we want to write a dictionary, we need to define an order on all English words (alphabetic order).

Definition: If (S, \leq) is a poset and every two elements of S are comparable, S is called a totally ordered or linearly ordered set, and ≤ is called a total order or linear order. A totally ordered set is also called a chain.

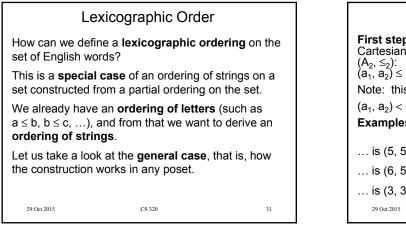
29 Oct 2015 CS 320

Partial Orderings

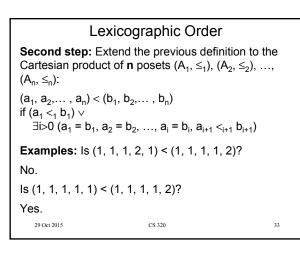
Example I: Is (Z, \leq) a totally ordered poset? Yes, because $a \le b$ or $b \le a$ for all integers a and b.

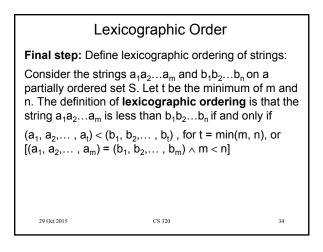
Example II: Is (Z⁺, |) a totally ordered poset? No, because it contains incomparable elements such as 5 and 7.

CS 320



raphic Order	
partial ordering on the posets, (A_1, \leq_1) and	
$(\mathbf{b}_1) \vee [(\mathbf{a}_1 = \mathbf{b}_1) \land (\mathbf{a}_2 \leq_2 \mathbf{b}_2)]$]
:	
$b_1) \vee [(a_1 = b_1) \land (a_2 <_2 b_2)]$]
(Z×Z, ≤),	
yes.	
no.	
no.	
CS 320 32	
	partial ordering on the posets, (A_1, \leq_1) and $b_1) \lor [(a_1 = b_1) \land (a_2 \leq_2 b_2)]$ $b_1) \lor [(a_1 = b_1) \land (a_2 <_2 b_2)]$ $(Z \times Z, \leq), \dots$ yes. no. no. no.

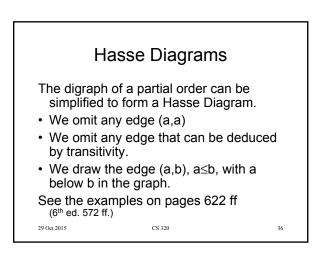




Lexicographic Order Examples: If we apply this concept to lowercase English letters, is discreet < discrete ? Yes, because in the 7th position, e < t. ... is discreetness < discreet ? No, because discreet is a prefix of discreetness. ... is discrete < discretion ? Yes, because in the 8th position, e < i.

CS 320

29 Oct 2015



Maximal & Minimal elements

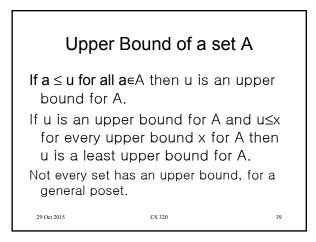
- An element a is minimal in a poset (S, \leq) if there is no b with b<a.
- An element a is maximal in a poset (S,\leq) if there is no b with b>a.
- Maximal (and minimal) elements are easy to spot in a Hasse diagram.
- They are elements with nothing above (or below) them.

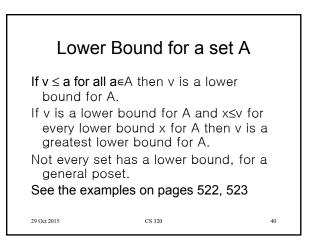
CS 320

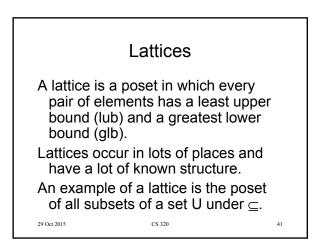
37

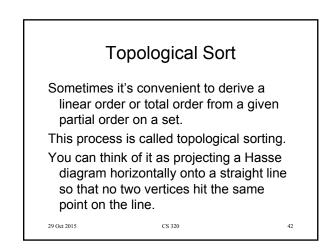
29 Oct 2015

Maximal & Minimal elements
a is the greatest element of a poset (S,≤) if b≤a for all b ∈ S.
c is the least element of a poset (S,≤) if c≤b for all b ∈ S.
If a greatest or least element exists it must be unique.
(Make sure you can prove this fact).









Т	opological Sort	
noting that has a minir	truct an algorithm to do every non empty subse nal element. truct a linear order on a	t in a poset
(S,⊆) by su	inccessively choosing a norm the elements left.	
These eleme the linear o	nts form an increasing s rder ≤.	equence in
	der is compatible in that s that a≤b in the linear	
The reverse	is guaranteed only if \subseteq	is linear.
29 Oct 2015	CS 320	43