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Permutations with repetitions

Theorem (p.423)(371 in 6th ed.): The 
number of r-permutations from a 
set of n objects with repetition 
allowed is nr.

Proof: 
Since we are allowed to repeat, we 
have n choices for each of r positions. 
The set we get is just the Cartesian 
product r times of the set.
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Combinations with repetition

Theorem (p.425)  (373 in 6th ed.)

There are C(n+r-1,r) ways to 
choose r objects from n if repetition 
of objects is allowed.

Proof: 
An example of this is: in how many 
ways can we choose 6 drinks, if we 
choose from water, juice, milk?
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Combinations with repetition

We can think of the n objects as 
described by n bins.  We choose an 
object by putting a marker, *, in a 
bin.

We think of the bins as marked by 
n+1 vertical bars on a line, and we 
put r stars, *, on the line in the n 
bins.
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Combinations with repetition

The two bars on the ends are fixed, but 

the n-1 internal bars can move as we 

add stars.

So the number of choices is the number 

of ways we can arrange r stars and n-1 

bars in a line.

That is C(n-1+r, r), the number of ways to 

choose r of the n-1+r positions for stars.
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Combinations with repetition

Example:

In how many ways can we choose 3 

drinks, if we can choose water, 

juice, milk, or beer?

Answer:  C(4+3-1, 3) = C(6,3) =

6!/(3!3!) = 20.
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Permutations with 

indistinguishable objects

Example:  In how many ways can we 

arrange 7 red beads, 4 blue beads and 

5 yellow beads in a row?

Theorem (p.375).  If we have n 

objects, ni indistinguishable of type 

i, i = 1 to k, they can be permuted 

in n!/(n1! n2! … nk!) ways.
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Permutations with 

indistinguishable objects

Proof:
If the n objects are all distinguishable 
there are n! permutations.

If we now identify n1 objects of type 1 then 
we can permute these n1 objects among 
themselves in n1! ways, giving distinct 
permutations of the distinguishable 
objects, but the same permutation if the 
n1 objects are indistinguishable.
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Permutations with 

indistinguishable objects

Thus, dividing n! by n1! gives the number 

of permutations of n objects with n1 of 

them being identical.

Repeating, to identify n2 objects of type 2, 

…, nk objects of type k, gives n!/(n1! n2! 

… nk!) as the result.
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Putting objects into boxes

Theorem (p.429)   (377 in 6th ed.). 

There are n!/(n1! n2! … nk!) ways to 

put n distinguishable objects into k 

boxes, so that the ith box contains ni

objects.
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Putting objects into boxes

Proof:  Think of distributing the objects into n 
positions on a line, with fixed bars 
separating locations which will be the 
boxes.  There are n! ways of permuting the 
objects.

But any permutation of the objects in a given 
box corresponds to a single method of 
putting the objects in the boxes. Thus we 
divide by n1! n2! … nk! To make up for 
counting the arrangement multiple times.
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Now it’s time to look at…

Discrete Probability
Section 7.1
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Discrete Probability

Everything you have learned about counting 

constitutes the basis for computing the probability of 

events to happen.

In the following, we will use the notion experiment

for a procedure that yields one of a given set of 

possible outcomes.

This set of possible outcomes is called the sample 

space of the experiment.

An event is a subset of the sample space.
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Discrete Probability

If all outcomes in the sample space are equally likely, 

the following definition of probability applies:

The probability of an event E, which is a subset of a 

finite sample space S of equally likely outcomes, is 

given by p(E) = |E|/|S|.

Probability values range from 0 (for an event that will 

never happen) to 1 (for an event that will always

happen whenever the experiment is carried out).
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Discrete Probability

Example I:

An urn contains four blue balls and five red balls. 

What is the probability that a ball chosen at random 

from the urn is blue?

Solution:

There are nine possible outcomes, and the event 

“blue ball is chosen” comprises four of these 

outcomes. Therefore, the probability of this event is 

4/9 or approximately 44.44%.
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Discrete Probability

Example II:

What is the probability of winning the lottery 6/49, 

that is, picking the correct set of six numbers out of 

49?

Solution:

There are C(49, 6) possible outcomes. Only one of 

these outcomes will actually make us win the lottery.

p(E) = 1/C(49, 6) = 1/13,983,816 
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Complementary Events

Let E be an event in a sample space S. The 

probability of an event –E, the complementary 

event of E, is given by

p(-E) = 1 – p(E).

We see this when all outcomes are equally likely:

p(-E) = (|S| - |E|)/|S| = 1 - |E|/|S| = 1 – p(E).

This rule is useful if it is easier to determine the 

probability of the complementary event than the 

probability of the event itself.  
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Complementary Events

Example I: A sequence of 10 bits is randomly 

generated. What is the probability that at least one of 

these bits is zero?

Solution: There are 210 = 1024 possible outcomes of 

generating such a sequence. The event –E, “none 

of the bits is zero”, includes only one of these 

outcomes, namely the sequence 1111111111.

Therefore, p(-E) = 1/1024.

Now p(E) can easily be computed as 

p(E) = 1 – p(-E) = 1 – 1/1024 = 1023/1024.
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Complementary Events

Example II: What is the probability that at least two 

out of 36 people have the same birthday?

Solution: The sample space S encompasses all 

possibilities for the birthdays of the 36 people,

so |S| = 36536.

Let us consider the event –E (“no two people out of 36 

have the same birthday”). –E includes P(365, 36) 

outcomes (365 possibilities for the first person’s 

birthday, 364 for the second, and so on). 

Then p(-E) = P(365, 36)/36536 = 0.168,

so p(E) = 0.832 or 83.2%
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Discrete Probability

Let E1 and E2 be events in the sample space S.

Then we have:

p(E1 ∪ E2) = p(E1) + p(E2) - p(E1 ∩ E2) 

Does this remind you of something?

Of course, the principle of inclusion-exclusion.

Oct 6, 2015 CS 320 20

Discrete Probability

Example: What is the probability of a positive 

integer selected at random from the set of positive 

integers not exceeding 100 to be divisible by 2 or 5? 

Solution:

E2: “integer is divisible by 2”

E5: “integer is divisible by 5”

E2 = {2, 4, 6, …, 100}

|E2| = 50

p(E2) = 0.5
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Discrete Probability

E5 = {5, 10, 15, …, 100}

|E5| = 20

p(E5) = 0.2

E2 ∩ E5 = {10, 20, 30, …, 100}

|E2 ∩ E5| = 10

p(E2 ∩ E5) = 0.1

p(E2 ∪ E5) = p(E2) + p(E5) – p(E2 ∩ E5 )

p(E2 ∪ E5) = 0.5 + 0.2 – 0.1 = 0.6
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Discrete Probability

What happens if the outcomes of an experiment are 
not equally likely?

In that case, we assign a probability p(s) to each 
outcome s∈S, where S is the sample space.

Two conditions have to be met:

(1):   0 ≤ p(s) ≤ 1 for each s∈S, and

(2):   ∑s∈S p(s) = 1

This means, as we already know, that (1) each 
probability must be a value between 0 and 1, and (2) 
the probabilities must add up to 1, because one of 
the outcomes is guaranteed to occur.
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Discrete Probability

How can we obtain these probabilities p(s) ?

Sometimes we know from the structure of the problem.

We can sometimes estimate it experimentally 

because the probability p(s) assigned to an outcome 

s equals the limit of the number of times s occurs 

divided by the number of times the experiment is 

performed.

Once we know the probabilities p(s), we can 

compute the probability of an event E as follows:

p(E) = ∑s∈E p(s) 
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A non-discrete probabilty

example

It is sometimes useful to think of the 
problem of picking a point at random 
from the unit square. It’s a good 
concrete example for thinking about 
probability theorems.

In this case the P(A), the probability that 
the point chosen is in the set A is the 
area of A.
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Discrete Probability

Example I: A die is biased so that the number 3 

appears twice as often as each other number.

What are the probabilities of all possible outcomes?

Solution: There are 6 possible outcomes s1, …, s6.

p(s1) = p(s2) = p(s4) = p(s5) = p(s6), p(s3) = 2p(s1)

Since the probabilities must add up to 1, we have:

5p(s1) + 2p(s1) = 1

7p(s1) = 1

p(s1) = p(s2) = p(s4) = p(s5) = p(s6) = 1/7, p(s3) = 2/7
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Discrete Probability

Example II: For the biased die from Example I, what 

is the probability that an odd number appears when 

we roll the die?

Solution:

Aodd = {s1, s3, s5}

Remember the formula p(A) = ∑s∈A p(s).

p(Aodd) = ∑s∈Aodd
p(s) = p(s1) + p(s3) + p(s5)

p(Aodd) = 1/7 + 2/7 + 1/7 = 4/7 = 57.14%
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Conditional Probability

If we toss a coin three times, what is the probability 

that an odd number of tails appears (event E), if the 

first toss is a tail (event F) ?

If the first toss is a tail, the possible sequences are 

TTT, TTH, THT, and THH. 

In two out of these four cases, there is an odd 

number of tails. 

Therefore, the probability of E, under the condition 

that F occurs, is 0.5.

We call this conditional probability. 
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Conditional Probability

If we want to compute the conditional probability of E 

given F, we use F as the sample space.

For any outcome of E to occur under the condition 

that F also occurs, this outcome must also be in

E ∩ F.

Definition: Let E and F be events with p(F) > 0.

The conditional probability of E given F, denoted by 

p(E | F), is defined as

p(E | F) = p(E ∩ F)/p(F) 
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Conditional Probability

Example: What is the probability of a random bit 
string of length four to contain at least two 
consecutive 0s, given that its first bit is a 0 ?

Solution:

E: “bit string contains at least two consecutive 0s”

F: “first bit of the string is a 0”

We know the formula  p(E | F) = p(E ∩ F)/p(F).

E ∩ F = {0000, 0001, 0010, 0011, 0100}

p(E ∩ F) = 5/16

p(F) = 8/16 = 1/2

p(E | F) = (5/16)/(1/2) = 10/16 = 5/8 = 0.625
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Independence

Let us return to the example of tossing a coin three 

times.

Does the probability of event E (odd number of tails) 

depend on the occurrence of event F (first toss is a 

tail) ?

In other words, is it the case that

p(E | F) ≠ p(E) ?

We actually find that p(E | F) = 0.5 and p(E) = 0.5,

so we say that E and F are independent events.
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Independence

Because we have p(E | F) = p(E ∩ F)/p(F),

p(E | F) = p(E) if and only if p(E ∩ F) = p(E)p(F).

Definition: The events E and F are said to be 

independent if and only if p(E ∩ F) = p(E)p(F).

Obviously, this definition is symmetrical for E and F. 

If we have p(E ∩ F) = p(E)p(F), then it is also true that 

p(F | E) = p(F).  This last condition would be an 

equivalent definition for independence.
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Independence

Intuitively, events A and B are 
independent if you won’t change your 
bet on B if you know A happened.

Independence is a property of the 
numbers P(A), P(B), P(A ∩B), though 
often we argue that events are 
independent from physical 
considerations, e.g. arguing that flips of 
two coins will be independent.
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Independence
Example: Suppose E is the event that a randomly generated 
bit string of length four begins with a 1, and F is the event that 
a randomly generated bit string contains an even number of 
0s. We have 16 outcomes. Are E and F independent?

Solution: Obviously, p(E) = p(F) = 0.5.

F = {0000, 0011, 0110, 0101, 1100, 1001, 1010, 1111}

E ∩ F = {1111, 1001, 1010, 1100}

p(E ∩ F) = 0.25

p(E ∩ F) = p(E)p(F)

Conclusion: E And F are independent.  If a bit string is 
generated and you know E happened you won’t change a bet 
on whether F also happened.
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Bernoulli Trials

Consider an experiment with two possible 

outcomes, such as tossing a coin. 

Each performance of such an experiment is called a 

Bernoulli trial.

We will call the two possible outcomes a success or 

a failure, respectively.

If p is the probability of a success and q is the 

probability of a failure, it is obvious that

p + q = 1.
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Bernoulli Trials

Often we are interested in the probability of exactly 

k successes when an experiment consists of n 

independent Bernoulli trials.

Example:

A coin is biased so that the probability of head is 2/3. 

What is the probability of exactly four heads to come 

up when the coin is tossed seven times?
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Bernoulli Trials

Solution:

There are 27 = 128 possible outcomes.

The number of possibilities for four heads among the 

seven trials is C(7, 4).

The seven trials are independent, so the probability 

of each of these outcomes is

(2/3)4(1/3)3.

Consequently, the probability of exactly four heads 

to appear is

C(7, 4)(2/3)4(1/3)3 = 560/2187 = 25.61%
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Bernoulli Trials

Theorem: The probability of k successes in n 

independent Bernoulli trials, with probability of 

success p and probability of failure q = 1 – p, is

C(n, k)pkqn-k .

We denote by b(k; n, p) the probability of k 

successes in n independent Bernoulli trials with 

probability of success p and probability of failure q = 

1 – p.

Considered as function of k, we call b the binomial 

distribution.
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Bernoulli Trials

Illustration: Let us denote a success by ‘S’ and a 

failure by ‘F’. As before, we have a probability of 

success p and probability of failure q = 1 – p.

What is the probability of two successes in five

independent Bernoulli trials?

Let us look at a possible sequence:

SSFFF

What is the probability that we will generate exactly 

this sequence?
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Bernoulli Trials

Sequence:

Probability:

S

p

S

p

F F F

q q q =  p2q3

Another possible sequence:

Sequence:

Probability:

F

q

S

p

F S F

q p q =  p2q3

Each sequence with two successes in five trials 

occurs with probability p2q3.
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Bernoulli Trials

And how many possible sequences are there?

In other words, how many ways are there to pick 

two items from a list of five?

We know that there are C(5, 2) = 10 ways to do this, 

so there are 10 possible sequences, each of which 

occurs with a probability of p2q3.

Therefore, the probability of any such sequence to 

occur when performing five Bernoulli trials is

C(5, 2) p2q3.

In general, for k successes in n Bernoulli trials we 

have a probability of C(n,k)pkqn-k.
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Bayes’ Theorem
The idea of Bayes’ Theorem:

Urn 1 has 5 red balls and 5 blue balls.  

Urn 2 has 2 red balls and 8 blue.  

We flip two coins.  If we get 2 heads we draw a 
ball at random from urn 1, otherwise from urn 2.

If we do this and get a red ball, what’s the 
probability it came from urn 1? (assuming we 
didn’t observe the drawing)
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Bayes’ Theorem Example

Let U1 = “get 2 H, draw from urn1”

U2 = “We draw from urn2”

R = “get red ball”, B = “get blue ball”

We want P(U1 | R) = P(U1∩R) / P(R)

= P(R|U1)P(U1)  /  [ P(R∩U1) + P(R ∩U2) ] 

= P(R|U1)P(U1)  /  [   P(R|U1)P(U1) +    
P(R|U2)P(U2)    ] 

= 0.5*0.25 / [ 0.5*0.25 + 0.2*0.75 ] 

= 0.125 / 0.275 = 0.454545…
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Bayes’ Theorem

Suppose A and Bi are events with P(A), 

P(Bi) not 0 for all i and 

S = Ui=1
n Bi and the Bi pairwise disjoint.  

Then

P(Bk | A) = P(Bk ∩ A) / P(A) =

=P(A | Bk) P(Bk) / ∑i=1
n P(A | Bi) P(Bi) 
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