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Random Variables
•In some experiments, we would like to assign a 
numerical value to each possible outcome in order 
to facilitate a mathematical analysis of the 
experiment.
•For this purpose, we introduce random variables.
•Definition: A random variable is a function from 
the sample space of an experiment to the set of real 
numbers. That is, a random variable assigns a real 
number to each possible outcome.
•Note: Random variables are functions, not 
variables, and they are not random, but map 
random results from experiments onto real numbers 
in a well-defined manner.
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Random Variables

•Example:

•Let X be the result of a rock-paper-scissors game.
•If player A chooses symbol a and player B chooses 
symbol b, then 

•X(a, b) = 1, if player A wins,
• = 0, if A and B choose the same symbol, 
• = -1, if player B wins.
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Random Variables
•A(rock, rock) = •0 

•A(rock, paper) = •-1

•A(rock, scissors) = •1

•A(paper, rock) = •1

•A(paper, paper) = •0

•A(paper, scissors) = •-1

•A(scissors, rock) = •-1

•A(scissors, paper) = •1

•A(scissors, scissors) = •0
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Expected Values

•Once we have defined a random variable for our 
experiment, we can statistically analyze the 
outcomes of the experiment.

•For example, we can ask: What is the average 
value (called the expected value) of a random 
variable when the experiment is carried out a large 
number of times?

•Can we just calculate the arithmetic mean across all 
possible values of the random variable?
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Expected Values

•No, we cannot, since it is possible that some 
outcomes are more likely than others.

•For example, assume the possible outcomes of an 
experiment are 1 and 2 with probabilities of 0.1 and 
0.9, respectively.

•Is the average value 1.5?

•No, since 2 is much more likely to occur than 1, the 
average must be larger than 1.5.
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Expected Values

•Instead, we have to calculate the weighted sum of 
all possible outcomes, that is, each value of the 
random variable has to be multiplied with its 
probability before being added to the sum.

•In our example, the average value is given by
0.1⋅1 + 0.9⋅2 = 0.1 + 1.8 = 1.9.

•Definition: The expected value (or expectation) of 
the random variable X(s) on the sample space S is 
equal to:

•E(x) = s∈Sp(s)X(s).
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Expected Values
•Example: Let X be the random variable equal to the 
sum of the numbers that appear when a pair of dice 
is rolled.
•There are 36 outcomes (= pairs of numbers from 1 
to 6).
•The range of X is {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

•Are the 36 outcomes equally likely?
•Yes, if the dice are not biased.
•Are the 11 values of X equally likely to occur?
•No, the probabilities vary across values.
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Expected Values
•P(X = 2) = 1/36
•P(X = 3) = 2/36 = 1/18
•P(X = 4) = 3/36 = 1/12
•P(X = 5) = 4/36 = 1/9
•P(X = 6) = 5/36 
•P(X = 7) = 6/36 = 1/6
•P(X = 8) = 5/36
•P(X = 9) = 4/36 = 1/9
•P(X = 10) = 3/36 = 1/12
•P(X = 11) = 2/36 = 1/18
•P(X = 12) = 1/36
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Expected Values

•E(X) = 2⋅(1/36) + 3⋅(1/18) + 4⋅(1/12) + 5⋅(1/9) +

6⋅(5/36) + 7⋅(1/6) + 8⋅(5/36) + 9⋅(1/9) +

10⋅(1/12) + 11⋅(1/18) + 12⋅(1/36)

•E(X) = 7

•This means that if we roll the dice many times, sum 
all the numbers that appear and divide the sum by 
the number of trials, we expect to find a value of 7.
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Expected Values
•Theorem 3, p. 480 (p. 429 6th ed.): 

if Xi, i = 1, 2, …, n with a positive integer n, are 

random variables on S, then

E(X1 + X2 + … + Xn) = E(X1) + E(X2) + … + E(Xn).

•Moreover, if a and b are real numbers, then 

E(aX + b) = aE(X) + b.
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(proof of Theorem 3)
• E(X+Y) = s∈Sp(s){X+Y}(s) (def. of E(X))

= s∈Sp(s)(X(s)+Y(s))
=  s∈Sp(s)X(s) + s∈Sp(s)Y(s)
= E(X) + E(Y)

• E(aX + b) = s∈Sp(s)(aX(s)+b)
= s∈Sp(s)aX(s) + s∈Sp(s)b 
= as∈Sp(s)X(s) + bs∈Sp(s)
= aE(X) + b.  (a and b real numbers)
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Expected Values
•Knowing this theorem, we could now solve the 
previous example much more easily:

•Let X1 and X2 be the numbers appearing on the first 
and the second die, respectively.

•For each die, there is an equal probability for each 
of the six numbers to appear. Therefore, E(X1) = 
E(X2) = (1 + 2 + 3 + 4 + 5 + 6)/6 = 7/2.

•We now know that 
E(X1 + X2) = E(X1) + E(X2) = 7.
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Expected Values
•We can use our knowledge about expected values 
to compute the average-case complexity of an 
algorithm.
•Let the sample space be the set of all possible 
inputs a1, a2, …, an, and the random variable X 
assign to each aj the number of operations that the 
algorithm executes for that input.
•For each input aj, the probability that this input 
occurs is given by p(aj).
•The algorithm’s average-case complexity then is:
•E(X) = j=1,…,np(aj)X(aj)
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Expected Values
•However, in order to conduct such an average-case 
analysis, you would need to find out:
• the number of steps that the algorithms takes 

for any (!) possible input, and
• the probability for each of these inputs to 

occur.
•For most algorithms, this would be a highly complex 
task, so we will stick with the worst-case analysis.
•On page 483 in the textbook (page 481 in the 6th Edition), an 
average-case analysis of the linear search algorithm is 
shown.
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Binomial Distribution
• A random variable X is Binomial (n,p) if 

P(X = j) = C(n,j)pjqn-j, for j = 0,1,2,…,n.
Here 0≤p≤1, and q = 1-p.

• Note that by the Binomial Theorem 
Σj=0

nP(X=j) = (p+q)n = 1.

• We can give two proofs that E(X) = np. 
See Theorem 2, page 479 (p 428,  6th ed) for 
the direct proof.  (easier proof coming up….)
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Binomial Distribution

• Note that X is Binomial (n,p) if X 
counts the number of successes in 
n independent trials of an event 
with probability p of success and q 
of failure on any trial.
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Expectation of a Binomial R.V.

• If X is binomial(n,p), let Xi be 1 if 
the ith trial gives a success, 0 
otherwise. 

• Then E(Xi) = 1p + 0q = p and 
X = Σi=1

n Xi (X is the number of 
successes in the n trials) so 
E(X) = Σi=1

n E(Xi) = np.
• For a direct proof see Theorem 2, p 479
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Expectation
• We defined E(X) = s∈Sp(s)X(s).

• But also, E(X) = r∈X(S)r P(X = r).
• In the first sum, we sum over all outcomes s 

the value of X at s weighted by the prob. of s.
• In the second sum we sum over all values X 

takes on, grouping all outcomes s such that 
X(s) = r in the event X=r.  

• P(X=r) is the prob. of that set of outcomes, 
and r is X(s) for each s in the event X=r.
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An Expectation example
• Roll a die. S = {1,2,3,4,5,6} (the outcomes)
• Define the random variable X by X(1) = X(2) 

= X(3) = 1, X(4) = X(5) = 6, X(6) = 18.
• E(x) = s∈Sp(s)X(s) = Σs=1

6 (1/6)X(s)  
• = (1/6)*1 + (1/6)*1 + (1/6)*1 + (1/6)*6 + 

(1/6)*6 + (1/6)*18
• = (3/6)*1+ (2/6)*6 + (1/6)*18 = 5.5
• Note: the last sum is just r∈X(S)r P(X = r).
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Independent Random Variables

•Definition: The random variables X and Y on a 
sample space S are independent if
•p(X(s) = u ∧ Y(s) = v) = p(X(s) = u) ⋅ p(Y(s) = v).

•In other words, X and Y are independent if the 
probability that X(s) = u ∧ Y(s) = v equals the product 
of the probability that X(s) = u and the probability 
that Y(s) = v for all real numbers u and v.
•This means that the events “X(s) = u” and “Y(s) = v”
are independent for every u and v.
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Independent Random Variables

•Example: Are the random variables X1 and X2 from 
the “pair of dice” example independent?

•Solution:
•p(X1 = i) = 1/6
•p(X2 = j) = 1/6
•p(X1 = i ∧ X2 = j) = 1/36

•Since p(X1 = i ∧ X2 = j) = p(X1 = i)⋅p(X2 = j) ,
the random variables X1 and X2 are independent.
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Independent Random Variables

•Theorem: If X and Y are independent random 
variables on a sample space S, then
E(XY) = E(X)E(Y).

•Note:
•E(X + Y) = E(X) + E(Y) is true for any X and Y, but
•E(XY) = E(X)E(Y) needs X and Y to be independent.

•How come?
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• Proof: the proof is subtle.
• E(XY) = Σs∊SX(s)Y(s)p(s), sum over 

outcomes.

• = Σu∊X(S),v∊Y(S) uvP(X=u and Y=v), 
sum over values X & Y take on, grouping 
outcomes.

• = Σ u∊X(S),v∊Y(S)uvP(X=u)P(Y=v), 
since X,Y are independent.

• = (Σ u∊X(S)uP(X=u))( Σv∊Y(S)vP(Y=v))

• =E(X)E(Y) 
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Independent Random Variables

•Example: Let X and Y be random variables on the 
sample space, and each of them assumes the values 
1 and 3 with equal probability. 
•Then E(X) = E(Y) = 2
•If X and Y are independent, we have:
•E(X + Y) = 1/4·(1 + 1) + 1/4·(1 + 3) + 

1/4·(3 + 1) + 1/4·(3 + 3) = 4 = E(X) + E(Y)
•E(XY) = 1/4·(1·1) + 1/4·(1·3) + 

1/4·(3·1) + 1/4·(3·3) = 4 = E(X)·E(Y)
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Independent Random Variables

•Let us now assume that X and Y are correlated in 
such a way that Y = 1 whenever X = 1, and Y = 3 
whenever X = 3.
•E(X + Y) = 1/2·(1 + 1) + 1/2·(3 + 3)  

= 4 = E(X) + E(Y) = 2 + 2
•E(XY) = 1/2·(1·1) + 1/2·(3·3)  

= 5 ≠ E(X)·E(Y) = 2·2
•So, we can guarantee the average value of XY to be 
the average value of X * the average value of Y if X 
and Y are independent
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Variance

•The expected value of a random variable is an 
important parameter for the description of a random 
distribution.

•It does not tell us, however, anything about how 
widely distributed the values are.

•This is described, at least in part, by the variance of 
a random variable.
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Variance

•Definition: Let X be a random variable on a sample 
space S. The variance of X, denoted by V(X), is

•V(X) = s∈S(X(s) – E(X))2p(s).

•The standard deviation of X, denoted by σ(X), is 
defined to be the square root of V(X).

•A large variance means the distribution is spread 
out, a small variance means it is more localized.
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Variance
•Useful rules:
•If X is a random variable on a sample space S, then
V(X) = E(X2) – E(X)2.   V(aX) = a2V(X)
•If X and Y are two independent random variables on 
a sample space S, then V(X + Y) = V(X) + V(Y).
•Furthermore, if Xi, i = 1, 2, …, n, with a positive 
integer n, are pairwise independent random variables 
on S, then 
V(X1 + X2 + … + Xn) = V(X1) + V(X2) + … + V(Xn).

•Proofs coming up, and  in the textbook on page 489 
(6th edition 436, 437).
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Variance

• Theorem.  If X is a random variable 
on a sample space S, then
(a) V(X) = E(X2) – E(X)2

(b) V(aX) = a2V(X)

• Proof: (b)
V(aX) = s∈S(aX(s) –E(aX))2p(s)
= s∈S(aX(s) –aE(X))2p(s) = a2V(X)
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• Proof (a): V(X) = s∈S(X(s) –E(X))2p(s)

= s∈S(X(s)2 –2E(X)X(s) + E(X)2)p(s)

= s∈SX(s)2p(s) -2E(X)s∈SX(s)p(s)

+ E(X)2s∈Sp(s)

= E(X2) -2E(X)E(X) + E(X)2

= E(X2) - E(X)2
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Variance

• Theorem (p 489)
If X and Y are independent random 
variables on a sample space S, 
then
V(X + Y) = V(X) + V(Y).

• Generalizing, for independent rv’s
X1,…,Xn,    V(j=1

n Xj) = j=i
n V(Xj) 
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• Proof:  recall that if X and Y are 
independent random variables then 
E(XY) = E(X)E(Y).

• Thus, V(X+Y) = E((X+Y)2) – E(X+Y)2

• = E(X2 + 2XY + Y2) – (E(X) + E(Y))2

• = E(X2) + 2E(X)E(Y) + E(Y2) +
-E(X)2 - 2E(X)E(Y) – E(y)2

• = E(X2) - E(X)2 + E(Y2) - E(y)2 

• = V(X) + V(Y)
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Variance
• So:
• If X is a random variable on a sample space 

S, V(X) = E(X2) – E(X)2.   V(aX) = a2V(X)
• If X and Y are two independent random 

variables on a sample space S, then V(X + Y) 
= V(X) + V(Y).

• Thus, if X and Y are independent and have 
the same variance, then V(X+Y) = 2V(X)

• Now, if X = Y, then X and Y are far from 
independent, and V(X+Y) = V(2X) = 4V(X)
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Binomial Distribution

• Theorem: If X is binomial (n,p) then
E(X) = np
V(X) = npq

• Proof: We proved E(X) = np earlier.  
• If Xi = 1 if the ith trial is a success and 0 

otherwise then E(Xi) = p, independent RVs.
• V(Xi) = E(Xi

2) – p2 = p – p2 = p(1-p) = pq. 
• But X = Σi=1

n Xi, so V(X) = Σi=1
n V(Xi) = npq
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Geometric Distribution
• Def.  A r.v. X has the geometric 

distribution with parameter p if 
P(X=k) = (1-p)k-1p, k = 1,2,3,4,…

• Example: X could be the number of times you have to 
flip a coin before getting an H, if P(H) = p on any flip.

• Note:  the geometric distribution has infinitely many 
values, but is discrete.

• Theorem. If X is geometric with 
parameter p, then 
E(X) = 1/p, V(X) = (1-p)/p2
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Geometric Distribution
• let f(x) = Σn=0

∞ xn = (1-x)-1. Then:
• 1.  f ’(x) = Σn=1

∞ nxn-1 = (1-x)-2, and
• 2. f ’’(x) = Σn=2

∞ n(n-1)xn-2 = 2(1-x)-3.
• E(X) = Σn=1

∞ nP(X=n) = Σn=1
∞ n(1-p)n-1p 

= p(1-(1-p))-2 = 1/p, using 1.
• V(X) = Σn=1

∞ (n-p-1)2 P(X=n) 
= Σn=1

∞ (n-p-1)2 (1-p)n-1p 
= Σn=1

∞ (n2-2np-1+p-2)(1-p)n-1p 
= Σn=1

∞ (n(n-1) +n -2np-1+p-2)(1-p)n-1p 
= Σn=1

∞ (n(n-1) +n(1-2p-1)+p-2)(1-p)n-1p 
= (1-p)pΣn=2

∞ n(n-1)(1-p)n-2 + (1-2p-1)pΣn=1
∞n (1-p)n-1 +

p-2 Σn=1
∞ (1-p)n-1p 

=(1-p)p2p-3 + (p-2)p-2 + p-2, using 2, 1, & sum of all probs.
= p-2(1-p)


