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m-ary trees
Definition: A rooted tree is called an m-ary tree if 
every internal vertex has no more than m children. 
The tree is called a full m-ary tree if every internal 
vertex has exactly m children.
An m-ary tree with m = 2 is called a binary tree.
Theorem 2: A tree with n vertices has (n – 1) edges.
Theorem 3: A full m-ary tree with i internal vertices 
contains n = mi + 1 vertices.
We did these theorems from page 752 (p. 690, 6th ed.) last 
time.
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More m-ary trees
From Theorem 3: A full m-ary tree with i internal 

vertices contains 
n = mi + 1 vertices we immediately get:

Theorem 4 (p. 753; 691 6th ed.):  A full m-ary tree with
1. n vertices has i = (n-1)/m internal vertices and l = 

((m-1)n + 1)/m leaves.
2. i internal vertices has n = mi+1 vertices and 

l = (m-1)i + 1 leaves.
3. l leaves has n = (ml-1)/(m-1) vertices and 

i = (l-1)/(m-1) internal vertices.
This means that for a full m-ary tree any one of these 

numbers determines the other two.
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Proof: from Theorem 3, n = mi + 1.
For 1, solve for i, i = (n-1)/m,

l =n–i= n – (n-1)/m = ((m-1)n+1)/m
For 2, Th.3 gives the first part, and 

l = n-i=(mi+1)-i = (m-1)i +1
For 3, solve the formula for l in terms 

of n from part 1 for n in terms of l, 
then subtract to get the formula for i.
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Huffman Coding Trees

We usually encode strings by assigning fixed-length 
codes to all characters in the alphabet (for example, 
8-bit coding in ASCII). 
However, if different characters occur with different 
frequencies, we can save memory and reduce 
transmittal time by using variable-length encoding.
The idea is to assign shorter codes to characters that 
occur more often.
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Huffman Coding Trees

We must be careful when assigning variable-length 
codes. 
For example, let us encode e with 0, a with 1, and t
with 01. How can we then encode the word tea?
The encoding is 0101.
Unfortunately, this encoding is ambiguous. It could 
also stand for eat, eaea, or tt.
Of course this coding is unacceptable, because it 
results in loss of information.

12 Nov 2015 CS 320 6

Huffman Coding Trees

To avoid such ambiguities, we can use prefix codes. 
In a prefix code, the bit string for a character never 
occurs as the prefix (first part) of the bit string for 
another character.
For example, the encoding of e with 0, a with 10, and t
with 11 is a prefix code. How can we now encode the 
word tea?
The encoding is 11010.
This bit string is unique, it can only encode the word 
tea.
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Huffman Coding Trees

We can represent prefix codes using binary trees, 
where the characters are the labels of the leaves in 
the tree.
The edges of the tree are labeled so that an edge 
leading to a left child is assigned a 0 and an edge 
leading to a right child is assigned a 1.
The bit string used to encode a character is the 
sequence of labels of the edges in the unique path 
from the root to the leaf labeled with this character.
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Huffman Coding Trees

The tree corresponding to our example:

0 1

0 1e

a t
In a tree, no leaf can be the ancestor of another leaf. 
Therefore, no encoding of a character can be a prefix 
of an encoding of another character (prefix code).
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Huffman Coding Trees

To determine the optimal (shortest) encoding for a 
given string, we first have to find the frequencies of 
characters in that string. 
Let us consider the following string:
eeadfeejjeggebeeggddehhhececddeciedee
It contains 1×a, 1×b, 3×c, 6×d, 15×e, 1×f, 4×g, 3×h, 
1×i, and 2×j.
We can now use Huffman’s algorithm to build the 
optimal coding tree.
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Huffman Coding Trees
For an alphabet containing n letters, Huffman’s 
algorithm starts with n vertices, one for each letter, 
labeled with that letter and its frequency.
We then determine the two vertices with the lowest 
frequencies and replace them with a tree whose root 
is labeled with the sum of these two frequencies and 
whose two children are the two vertices that we 
replaced.
In the following steps, we determine the two lowest 
frequencies among the single vertices and the roots 
of trees that we already created.
This is repeated until we obtain a single tree.
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Huffman Coding Trees

1 1 1 1 2 3 3 4 6 15
a b f i j c h g d e
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Huffman Coding Trees

2 1 1 2 3 3 4 6 15
f i j c h g d e

1 1
a b
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Huffman Coding Trees

2 2 3 3 4 6 15
j c h g d e

1 1
a b

2

1 1
f i
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Huffman Coding Trees
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Huffman Coding Trees
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Huffman Coding Trees
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Huffman Coding Trees
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Huffman Coding Trees
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Huffman Coding Trees
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Huffman Coding Trees
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Huffman Coding Trees
Finally, we convert the tree 
into a prefix code tree:

0 1
0 1 e

0 1

0 1

0 1

0 1

0 1

0 1

0 1

d

ghj
if

c
ba

The variable-length 
codes are:
a (freq. 1):  00000
b (freq. 1):  00001
c (freq. 3):    0001
d (freq. 6):      011
e (freq. 15):        1
f (freq. 1):  00100
g (freq. 4):    0101
h (freq. 3):   0100
i  (freq. 1):  00101
j (freq. 2):    0011
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Huffman Coding Trees

If we encode the original string
eeadfeejjeggebeeggddehhhececddeciedee
using a fixed-length code, we need four bits per 
character (for ten different characters). Therefore, the 
encoding of the entire string is 4⋅37 = 148 bits long.
With our variable-length code, we only need 1⋅5 + 
1⋅5 + 3⋅4 + 6⋅3 + 15⋅1 + 1⋅5 + 4⋅4 + 3⋅4 + 1⋅5 + 2⋅4 
= 101 bits.
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Huffman Coding Trees

It can be shown that, for any given string, Huffman 
coding trees always produce a variable-length code 
with minimum description length for that string.

For more on  Huffman’s algorithm, please take a look 
at:

http://www.cs.duke.edu/csed/poop/huff/info/
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Tree Universal Address System

In trees, the order of children from left to right is often 
important and must be fixed.

In the Universal Address System each vertex has an 
address like 2.3.4.1  

• The root has address 0.
• The n children of the root are labeled 1 to n, left to 

right.
• The m children of a vertex labeled A are labeled A.1, 

A.2, …, A.m, left to right.
Thus 2.3.4 would be the fourth child of the third child of 

the second child of the root (left to right in each 
case).
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Object Identifiers

An example of this is the OID 
system, object identifiers.

These are used as a universal 
means of describing objects.

See 
http://www.alvestrand.no/objectid/
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Tree Traversal

There are several schemes for 
systematically visiting all vertices of 
a tree.  See section 11.3.

Generally when we visit a vertex we 
do something at the vertex, such as 
computing something or outputting 
some value.
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Preorder Traversal

In preorder traversal of a tree, 
1. We visit the root first.
2. Next we visit the subtrees (if any) 

T1, T2, …, Tn left to right, visiting 
each subtree in preorder.
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Inorder Traversal

In inorder traversal of a tree, 
1. We visit the left subtree T1 first, if it 

exists, applying inorder traversal to it.
2. We visit the root next.
3. Next we visit the remaining subtrees 

(if any) T2, …, Tn left to right, visiting 
each subtree using inorder.
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Postorder Traversal

In postorder traversal of a tree, 
1. We visit the the subtrees (if any) 

T1, T2, …, Tn left to right, visiting 
each subtree in postorder. 

2. Last, we visit the root.
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Tree Traversals and 
Arithmetic Expressions

Arithmetic expressions such as (x+y)*(yx -z) are 
commonly stored in trees for evaluation.

The infix form (x+y)*((y*x) -z) would come from 
an inorder traversal of the tree.

The prefix or Polish Notation form would be 
*+xy-*yxz (preorder traversal of the tree).

The postfix or Reverse Polish Notation (RPN)
form would be xy+yx*z-* (postorder traversal)

The latter two forms don’t need parentheses, 
though you have to know where the 
numerical symbols start and end.


