
17 Nov 2015

1

17 Nov 2015 CS 320 1

Depth First Search
Depth First Search is a technique for

visiting each each vertex of a graph,
going as far as possible and then
backtracking to visit vertices not yet
reached.

We can use depth first search (or breadth
first search) to create a spanning tree
for a connected graph (a subgraph
which is a tree and contains every
vertex)

17 Nov 2015 CS 320 2

Depth First Search
As an example we can create a spanning tree T for a

connected graph G with vertices v1, v2, …, vn.
1. Initialize T to have one vertex, v1, and no edges.
2. visit(v1).
Here, visit is a recursive depth first search algorithm.
visit(vertex v) {

mark v visited;
for each vertex w adjacent to v, not visited {

add vertex w and edge {v,w} to T;
visit(w);
}

}

17 Nov 2015 CS 320 3

Breadth First Search

In breadth first search, instead of
going as far as possible, we create
a queue to store vertices and visit
all the neighbors before moving on.

17 Nov 2015 CS 320 4

Breadth First Search
// as an example, to create a spanning tree T.
Let T = tree with only v1, no edges;
Add v1 to queue Q;
While Q is not empty {

remove v from Q;
for each neighbor w of v {

if w not visited {
add w to Q;
add w and edge {v,w} to T;
mark w visited;

}
}

}

17 Nov 2015 CS 320 5

Applications of Trees

There are numerous important applications of trees,
only three of which we will discuss today:

• Network optimization with minimum spanning
trees

• Problem solving with backtracking in decision
trees

• Data compression with prefix codes in Huffman
coding trees

17 Nov 2015 CS 320 6

Spanning Trees

Definition: Let G be a connected simple graph. A
spanning tree of G is a subgraph of G that is a tree
containing every vertex of G.
Note: A spanning tree of G = (V, E) is a connected
graph on V with a minimum number of edges
(|V| - 1).
Example: Since winters in Boston can be very cold,
six universities in the Boston area decide to build a
tunnel system that connects their libraries.

17 Nov 2015

2

17 Nov 2015 CS 320 7

Spanning Trees
The complete graph including all possible tunnels:

Brandeis Harvard

MIT

TuftsBU

UMass
The spanning trees of this graph connect all libraries
with a minimum number of tunnels.

17 Nov 2015 CS 320 8

Spanning Trees
Example for a spanning tree:

Brandeis Harvard

MIT

TuftsBU

UMass
Since there are 6 libraries, 5 tunnels are sufficient to
connect all of them.

17 Nov 2015 CS 320 9

Spanning Trees

Now imagine that you are in charge of the tunnel
project. How can you determine a tunnel system of
minimal cost that connects all libraries?

Definition: A minimum spanning tree in a
connected weighted graph is a spanning tree that has
the smallest possible sum of weights of its edges.
How can we find a minimum spanning tree?

17 Nov 2015 CS 320 10

Spanning Trees
The complete graph with cost labels (in billion $):

The least expensive tunnel system costs $18 billion.

Brandeis Harvard

MIT

TuftsBU

UMass

7

8

9

9 6

64 5 4

4
3

2

3
5

4

17 Nov 2015 CS 320 11

Spanning Trees

Prim’s Algorithm:
• Begin by choosing any edge with smallest weight

and putting it into the spanning tree,
• successively add to the tree edges of minimum

weight that are incident to a vertex already in
the tree and not forming a simple circuit with
those edges already in the tree,

• stop when (n – 1) edges have been added.

17 Nov 2015 CS 320 12

Spanning Trees

Kruskal’s Algorithm:
Kruskal’s algorithm is identical to Prim’s
algorithm, except that it does not demand new
edges to be incident to a vertex already in the
tree.
Both algorithms are guaranteed to produce a
minimum spanning tree of a connected
weighted graph. Kruskal’s algorithm is
O(e log e) while Prim’s algorithm is O(e log v)
Please look at the proof of Prim’s algorithm on page
799 (6th edition: p. 741).

17 Nov 2015

3

17 Nov 2015 CS 320 13

Backtracking in Decision Trees
A decision tree is a rooted tree in which each
internal vertex corresponds to a decision, with a
subtree at these vertices for each possible outcome
of the decision.
Decision trees can be used to model problems in
which a series of decisions leads to a solution
(compare with the “binary search tree” example).
The possible solutions of the problem correspond to
the paths from the root to the leaves of the decision
tree.

17 Nov 2015 CS 320 14

Backtracking in Decision Trees

There are problems that require us to perform an
exhaustive search of all possible sequences of
decisions in order to find the solution.
We can solve such problems by constructing the
complete decision tree and then find a path from its
root to a leaf that corresponds to a solution of the
problem.
In many cases, the efficiency of this procedure can be
dramatically increased by a technique called
backtracking.

17 Nov 2015 CS 320 15

Backtracking in Decision Trees
Idea: Start at the root of the decision tree and move
downwards, that is, make a sequence of decisions,
until you either reach a solution or you enter a
situation from where no solution can be reached by
any further sequence of decisions.
In the latter case, backtrack to the parent of the
current vertex and take a different path downwards
from there. If all paths from this vertex have already
been explored, backtrack to its parent.
Continue this procedure until you find a solution or
establish that no solution exists (there are no more
paths to try out).

17 Nov 2015 CS 320 16

Backtracking in Decision Trees

Example: The n-queens problem
How can we place n queens on an n×n chessboard
so that no two queens can capture each other?

QQ
x
x
x

x
x

x

xx

x

xx

x
x

x
xx

x
x
x
xx

x
x

x
x

x
x

A queen can move any
number of squares
horizontally, vertically, and
diagonally.
Here, the possible target
squares of the queen Q are
marked with an x.

17 Nov 2015 CS 320 17

Backtracking in Decision Trees
Obviously, in any solution of the n-queens problem,
there must be exactly one queen in each column of
the board.
Therefore, we can describe the solution of this
problem as a sequence of n decisions:
Decision 1: Place a queen in the first column.
Decision 2: Place a queen in the second column....
Decision n: Place a queen in the n-th column.

We are now going to solve the 4-queens problem
using the backtracking method.

17 Nov 2015 CS 320 18

Backtracking in Decision Trees

Q
Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q
Q

Q

Q

Q
Q

Q

place 1st queen

place 2nd queen

place 3rd queen

place 4th queen

empty board

Q

Q

Q

Q
Q

17 Nov 2015

4

17 Nov 2015 CS 320 19

Backtracking in Decision Trees

We can also use backtracking to write “intelligent”
programs that play games against a human
opponent.
Just consider this extremely simple (and not very
exciting) game:
At the beginning of the game, there are seven coins
on a table. Player 1 makes the first move, then player
2, then player 1 again, and so on. One move consists
of removing 1, 2, or 3 coins. The player who removes
all remaining coins wins.

17 Nov 2015 CS 320 20

Backtracking in Decision Trees
Let us assume that the computer has the first move.
Then, the game can be described as a series of
decisions, where the first decision is made by the
computer, the second one by the human, the third
one by the computer, and so on, until all coins are
gone.
The computer wants to make decisions that
guarantee its victory (in this simple game).
The underlying assumption is that the human always
finds the optimal move.

17 Nov 2015 CS 320 21

Backtracking
7

6

5

4

3 2 1
1 2 3

2 1

C C

1
4

2

C
3

3

5
2

C

H

C

H

C

1

3 2 1
1 2 3

2 1

H HH
3

1

1

4

3 2 1
1 2 3

2 1

H HH
3

4

3 2 1
1 2 3

2 1

C CC
3

17 Nov 2015 CS 320 22

Backtracking in Decision Trees

So the computer will start the game by taking three
coins and is guaranteed to win the game.
For more interesting games such as chess, it is
impossible to check every possible sequence of
moves. The computer player then only looks ahead a
certain number of moves and estimates the chance
of winning after each possible sequence.

17 Nov 2015 CS 320 23

Permutation Matrices

A permutation matrix is an n by n
matrix with a single 1 in each row
and column, 0 elsewhere.

If P is a permutation (bijection) on
{1,2,..,n} let AP be the permutation
matrix with
AiP(i) = 1, Aij = 0 for j ≠ P(i)

17 Nov 2015 CS 320 24

Permutation Matrices

Let Euv be the n by n matrix with 1 in
the (u,v) position and 0 elsewhere.

* Note that EuvErs = Eus if v = r, and is
the n by n zero matrix otherwise.

Then AP = Σi=1
n EiP(i)

If Q = P-1 then you can check that
AQ = (AP)T, the transpose of AP.

17 Nov 2015

5

17 Nov 2015 CS 320 25

Permutation Matrices

Note also that
AP

T AP = Σi=1
nEP(i)iΣ t=1

nEtP(t) =
Σi=1

nΣ t=1
nEP(i)iEtP(t) = Σ t=1

nEP(t)P(t) = In, the
n by n identity matrix, by *

Also, Eik AP = Eik Σ t=1
nEtP(t) = EiP(k).

Right multiplying an m by n matrix B by AP
permutes the columns of B, moving the
kth column to the P(k)th column

17 Nov 2015 CS 320 26

Permutation Matrices

Likewise AP
T Eik = Σ t=1

nEP(t)t Eik = EP(i)k
so left multiplying an n by m matrix B

by AP
T will permute the rows, moving

the ith row to the P(i)th place.
If B is n by n then AP

T B AP will be B with
both rows and columns permuted by P:
row i → row P(i), column j → column P(j)

17 Nov 2015 CS 320 27

Isomorphisms of Graphs

Suppose G and H are graphs, each
with n vertices. If G has vertices
g1,…gn and H has vertices h1,…,hn
then a permutation P taking gi to
hP(i) will give an isomorphism of
graphs if AP

T MG AP = MH, where
MS is the adjacency matrix of graph
S.

17 Nov 2015 CS 320 28

Example
The graphs G and H are clearly isomorphic,
but can we tell that from their matrices?

4 1

32

1 2

34

G H

Map vertices of G to those of H by
P(1) = 4, P(2) = 1, P(3) = 3, P(4) = 2.

17 Nov 2015 CS 320 29

0 1 0 1
0 1 0 1
1 1 0 0
0 1 0 0

1 1 0 0
1 0 0 0
1 0 0 1
1 1 0 0

MG= MH =

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

AP =

17 Nov 2015 CS 320 30

MGAP =
0 1 0 1
0 1 0 1
1 1 0 0
0 1 0 0

1 1 0 0
1 0 0 0
1 0 0 1
1 1 0 0

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

=

1 1 0 0
1 1 0 0
1 0 0 1
1 0 0 0

1 1 0 0
1 1 0 0
1 0 0 1
1 0 0 0

AP
TMGAP = = = MH

17 Nov 2015

6

17 Nov 2015 CS 320 31

Isomorphisms of Graphs

Note that if F is an isomorphism from
a graph G of n vertices v1…vn to a
graph H of n vertices w1…wn then F
defines a permutation of {1,…,n}
and the adjacency matrices of G
and H will be related by a
permutation matrix.

17 Nov 2015 CS 320 32

Isomorphisms of Graphs

But not every permutation of the
vertices will produce a graph
isomorphism. The permutations
producing a graph isomorphism F
have to map the edges
appropriately because (v,u) is an
edge iff (F(v), F(u)) is an edge.

