
24 Nov 2015

1

24 Nov 2015 CS 320 1

Boolean Algebra

Boolean algebra provides the operations and the rules
for working with the set {0, 1}.
These are the rules that underlie electronic circuits,
and the methods we will discuss are fundamental to
VLSI design.
We are going to focus on three operations:
• Boolean complementation,
• Boolean sum, and
• Boolean product

24 Nov 2015 CS 320 2

Boolean Operations

The complement is denoted by a bar (on the slides,
we will use a minus sign). It is defined by
- = 1 and -1 = 0.

The Boolean sum, denoted by + or by OR, has the
following values:
1 + 1 = 1, 1 + 0 = 1, 0 + 1 = 1, 0 + 0 = 0

The Boolean product, denoted by ⋅ or by AND, has
the following values:
1 ⋅ 1 = 1, 1 ⋅ 0 = 0, 0 ⋅ 1 = 0, 0 ⋅ 0 = 0

24 Nov 2015 CS 320 3

Boolean Functions and Expressions

Definition: Let B = {0, 1}. The variable x is called a
Boolean variable if it assumes values only from B.
A function from Bn, the set
{(x1, x2, …, xn) | xi∈B, 1 ≤ i ≤ n}, to B is called a
Boolean function of degree n.

Boolean functions can be represented using
expressions made up from the variables and Boolean
operations.

24 Nov 2015 CS 320 4

Boolean Functions and Expressions

The Boolean expressions in the variables x1, x2, …,
xn are defined recursively as follows:
• 0, 1, x1, x2, …, xn are Boolean expressions.
• If E1 and E2 are Boolean expressions, then (-E1),

(E1E2), and (E1 + E2) are Boolean expressions.

Each Boolean expression represents a Boolean
function. The values of this function are obtained by
substituting 0 and 1 for the variables in the
expression.

24 Nov 2015 CS 320 5

Boolean Functions and Expressions

For example, we can create Boolean expression in
the variables x, y, and z using the “building blocks”
0, 1, x, y, and z, and the construction rules:
Since x and y are Boolean expressions, so is xy.
Since z is a Boolean expression, so is (-z).
Since xy and (-z) are expressions, so is xy + (-z).
… and so on…

24 Nov 2015 CS 320 6

Boolean Functions and Expressions

Example: Give a Boolean expression for the Boolean
function F(x, y) as defined by the following table:

x y F(x, y)
0 0 0
0 1 1
1 0 0
1 1 0

Possible solution: F(x, y) = (-x)⋅y

24 Nov 2015

2

24 Nov 2015 CS 320 7

Boolean Functions and Expressions

There is a simple method for deriving a Boolean
expression for a function that is defined by a table.
This method is based on minterms.
Definition: A literal is a Boolean variable or its
complement. A minterm of the Boolean variables x1,
x2, …, xn is a Boolean product y1y2…yn, where yi = xi
or yi = -xi.
Hence, a minterm is a product of n literals, with one
literal for each variable.

24 Nov 2015 CS 320 8

Boolean Functions and Expressions

Definition: The Boolean functions F and G of n
variables are equal if and only if F(b1, b2, …, bn) =
G(b1, b2, …, bn) whenever b1, b2, …, bn belong to B.
Two different Boolean expressions that represent the
same function are called equivalent.
For example, the Boolean expressions xy, xy + 0, and
xy⋅1 are equivalent.

24 Nov 2015 CS 320 9

Boolean Functions and Expressions

The complement of the Boolean function F is the
function –F, where –F(b1, b2, …, bn) =
-(F(b1, b2, …, bn)).
Let F and G be Boolean functions of degree n. The
Boolean sum F+G and Boolean product FG are then
defined by
(F + G)(b1, b2, …, bn) = F(b1, b2, …, bn) + G(b1, b2, …,
bn)
(FG)(b1, b2, …, bn) = F(b1, b2, …, bn) G(b1, b2, …, bn)

24 Nov 2015 CS 320 10

Boolean Functions and Expressions

Question: How many different Boolean functions of
degree 2 are there?
Solution: There are 16 of them, F1, F2, …, F16:

1
0
0
0
F2

0
0
0
0
F1

010
101
011

000
F3yx

1
1
1
0
F8

0
1
1
0
F7

0
0
0

1
F9

0
0
1
0
F5

1
1
0
0
F4

1
0
1

0
F6

0
1
0
1
F11

1
0
0
1
F10

0
1
1

1
F12

1
0
1
1
F14

0
0
1
1
F13

1
1
0

1
F15

1
1
1
1
F1
6

24 Nov 2015 CS 320 11

Boolean Functions and Expressions

Question: How many different Boolean functions of
degree n are there?
Solution:
There are 2n different n-tuples of 0s and 1s.
A Boolean function is an assignment of 0 or 1 to each
of these 2n different n-tuples.
Therefore, there are 22n different Boolean functions.

24 Nov 2015 CS 320 12

Boolean Identities

There are useful identities of Boolean
expressions that can help us to transform an
expression A into an equivalent expression B
(see Table 5 on page 815 [6th edition: page
753] in the textbook).

24 Nov 2015

3

24 Nov 2015 CS 320 13

--x = x, law of double complement
x+x = x, idempotent laws
x⋅x = x

x+0 = x, identity laws
x⋅1 = x

x+1 = 1, domination laws
x⋅0 = 0

x+y = y+x, commutative laws
x⋅y = y⋅x

24 Nov 2015 CS 320 14

x+(y+z) = (x+y)+z, associative laws
x⋅(y⋅z) = (x⋅y)⋅z

x+yz = (x+y)(x+z), distributive laws
x⋅(y+z) = (x⋅y)+(x⋅z)

-(xy) = -x + -y, De Morgan’s laws
-(x+y) = (-x)(-y)
x+xy = x, Absorption laws
x(x+y) = x

x+-x = 1, unit property
x(-x) = 0, zero property

24 Nov 2015 CS 320 15

Duality

We can derive additional identities with the
help of the dual of a Boolean expression.
The dual of a Boolean expression is obtained
by interchanging Boolean sums and Boolean
products and interchanging 0s and 1s.

24 Nov 2015 CS 320 16

Duality
Examples:
The dual of x(y + z) is x + yz.
The dual of -x⋅1 + (-y + z) is (-x + 0)((-y)z).

The dual of a Boolean function F represented by a
Boolean expression is the function represented by the
dual of this expression.
This dual function, denoted by Fd, does not depend
on the particular Boolean expression used to
represent F. (exercise 30, page 881 [6th ed. p.756])

The dual is essentially the complement, but with
any variable x replaced by -x. (exercise 29, p. 881)

24 Nov 2015 CS 320 17

Duality
Therefore, an identity between functions represented
by Boolean expressions remains valid when the
duals of both sides of the identity are taken.
We can use this fact, called the duality principle, to
derive new identities.
For example, consider the absorption law
x(x + y) = x.
By taking the duals of both sides of this identity, we
obtain the equation x + xy = x, which is also an
identity (and also called an absorption law).

24 Nov 2015 CS 320 18

Definition of a Boolean Algebra
All the properties of Boolean functions and
expressions that we have discovered also apply to
other mathematical structures such as propositions
and sets and the operations defined on them.
If we can show that a particular structure is a Boolean
algebra, then we know that all results established
about Boolean algebras apply to this structure.
For this purpose, we need an abstract definition of a
Boolean algebra.

24 Nov 2015

4

24 Nov 2015 CS 320 19

Definition of a Boolean Algebra
Definition: A Boolean algebra is a set B with two
binary operations ∨ and ∧, elements 0 and 1, and a
unary operation – such that the following properties
hold for all x, y, and z in B:
x ∨ 0 = x and x ∧ 1 = x (identity laws)
x ∨ (-x) = 1 and x ∧ (-x) = 0 (domination laws)
(x ∨ y) ∨ z = x ∨ (y ∨ z) and
(x ∧ y) ∧ z = x ∧ (y ∧ z) and (associative laws)
x ∨ y = y ∨ x and x ∧ y = y ∧ x (commutative laws)
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (distributive laws)

24 Nov 2015 CS 320 20

Boolean Algebras
Examples of Boolean Algebras are:
1. The algebra of all subsets of a set U, with

+ = ∪, ⋅ = ∩, - = complement, 0 = ∅, 1 = U.
2. The algebra of propositions with symbols

p1, p2,…,pn, with + = ∨, ⋅ = ∧, - = ¬, 0 = F,
1 = T.

3. If B1, …, Bn are Boolean Algebras, so is B1×
.. ×Bn, with operations defined coordinate-
wise.

24 Nov 2015 CS 320 21

Logic Gates
Electronic circuits consist of so-called gates. There are three
basic types of gates.
In each case the input is a Boolean expression and the output
is another Boolean expression.

x

y

x+y OR gate

AND gate
x

y

xy

x -x
inverter

24 Nov 2015 CS 320 22

Logic Gates
Example: How can we build a circuit that computes
the function xy + (-x)y ?

xy + (-x)y

x

y

xy

x -x

y

(-x)y

24 Nov 2015 CS 320 23

Multi switch light circuit

Suppose we want a circuit for a light
controlled by two switches, where
changing the state of either switch
changes the state of the light (on or off).

If we let x and y be the states of the
switches (0 or 1) then the boolean
expression xy + (-x)(-y) (- = complement) will do
the job.

24 Nov 2015 CS 320 24

Multi switch light circuit
This is because if both x and y are “on”

(1) or “off” (0) xy + (-x)(-y) will be 1, and
otherwise will be 0.

We can generalize this method. For three
switches the Boolean expression
xyz + x(-y)(-z) + (-x)y(-z) + (-x)(-y)z will
work.

Can you draw circuits implementing these
expressions? (see pp. 825, 826
[6th ed. pp. 763, 764])

24 Nov 2015

5

24 Nov 2015 CS 320 25

Adding binary integers

If we add two one bit integers x and y we
get a sum for that bit position plus a
carry bit.

If we don’t consider a carry bit from a
lower bit addition we get what’s called a
half adder.

If we do get consider an input carry bit we
have a full adder. (see p. 827, 6th ed.765)

24 Nov 2015 CS 320 26

Half Adder

Given input bits x and y, the result bit
will be x+y unless both x and y are
1, in which case the result is 0.

This means that we can express the
result bit as (x+y)(-(xy)), or
(x+y)(-x + -y).

The carry bit will be xy (we carry if
both x and y are 1)

24 Nov 2015 CS 320 27

Full Adder
If we add a carry bit c0 from the previous

order bit sum our result for this bit would
be 1 if one or three of c0, x, y are 1, and
0 otherwise.

This means
xyc0+x(-y)(-c0)+(-x)y(-c0)+(-x)(-y)c0
would work, with carry bit
xyc0+xy(-c0)+x(-y)c0+(-x)yc0

See p. 827 to check your implementation.

24 Nov 2015 CS 320 28

Minimizing Circuits

A Boolean function can be
implemented by many different
Boolean expressions.

Disjunctive normal form, the sum-of-
products expansion we got from the
table of values of the expression, is
often not the most efficient.

24 Nov 2015 CS 320 29

Minimizing Circuits

For example, the Boolean expression
x1(-x2)x3 + x1x2x3 + (-x1)x3

= x1((-x2)+x2)x3 + (-x1)x3

= x1x3 + (-x1)x3 = (x1 + (-x1))x3 = x3

This last expression is a lot easier to
compute. No gates required. Much
simpler circuit.

24 Nov 2015 CS 320 30

Minimizing Circuits

Karnaugh Maps and the Quine-
McCluskey Method are used for
simplifying Boolean expressions.

See section 12.4.
We’ll do some examples on the

board.

