Boolean Algebra

Boolean algebra provides the operations and the rules for working with the set **{0, 1}**.

These are the rules that underlie **electronic circuits**, and the methods we will discuss are fundamental to **VLSI design**.

CS 320

We are going to focus on three operations:

- · Boolean complementation,
- · Boolean sum, and
- Boolean product

24 Nov 2015

Boolean Operations

The **complement** is denoted by a bar (on the slides, we will use a minus sign). It is defined by

-0 = 1 and -1 = 0.

24 Nov 2015

1

The **Boolean sum**, denoted by + or by OR, has the following values:

1 + 1 = 1, 1 + 0 = 1, 0 + 1 = 1, 0 + 0 = 0

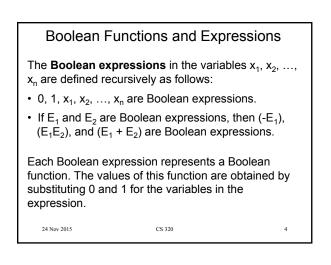
The **Boolean product**, denoted by \cdot or by AND, has the following values:

CS 320

2

 $1 \cdot 1 = 1, \quad 1 \cdot 0 = 0, \quad 0 \cdot 1 = 0, \quad 0 \cdot 0 = 0$

Boolean Functions and Expressions	
Definition: Let B = {0, 1}. The variable x is called a Boolean variable if it assumes values only from B.	
A function from B^n , the set $\{(x_1, x_2,, x_n) \mid x_i \in B, 1 \le i \le n\}$, to B is called a Boolean function of degree n .	
Boolean functions can be represented using expressions made up from the variables and Boolean operations.	
24 Nov 2015 CS 320 3	



Boolean Functions and Expressions	
For example, we can create Boolean expression in the variables x, y, and z using the "building blocks" 0, 1, x, y, and z, and the construction rules:	
Since x and y are Boolean expressions, so is xy.	
Since z is a Boolean expression, so is (-z).	

Since xy and (-z) are expressions, so is xy + (-z).

CS 320

... and so on...

24 Nov 2015

5

Boolean Functions and Expressions

Example: Give a Boolean expression for the Boolean function F(x, y) as defined by the following table:

х	у	F(x, y)
0	0	0
0	1	1
1	0	0
1	1	0

CS 320

Possible solution: $F(x, y) = (-x) \cdot y$

24 Nov 2015

1

6

Boolean Functions and Expressions

There is a simple method for deriving a Boolean expression for a function that is defined by a table. This method is based on **minterms**.

Definition: A **literal** is a Boolean variable or its complement. A **minterm** of the Boolean variables x_1 , x_2 , ..., x_n is a Boolean product $y_1y_2...y_n$, where $y_i = x_i$ or $y_i = -x_i$.

Hence, a minterm is a product of n literals, with one literal for each variable.

24 Nov 2015

CS 320

7

Boolean Functions and Expressions

Definition: The Boolean functions F and G of n variables are **equal** if and only if $F(b_1, b_2, ..., b_n) = G(b_1, b_2, ..., b_n)$ whenever $b_1, b_2, ..., b_n$ belong to B. Two different Boolean expressions that represent the same function are called **equivalent**.

For example, the Boolean expressions xy, xy + 0, and $xy \cdot 1$ are equivalent.

CS 320

8

24 Nov 2015

Boolean Functions and Expressions The complement of the Boolean function F is the function -F, where $-F(b_1, b_2, ..., b_n) =$ $-(F(b_1, b_2, ..., b_n))$. Let F and G be Boolean functions of degree n. The Boolean sum F+G and Boolean product FG are then defined by $(F + G)(b_1, b_2, ..., b_n) = F(b_1, b_2, ..., b_n) + G(b_1, b_2, ..., b_n)$ $(FG)(b_1, b_2, ..., b_n) = F(b_1, b_2, ..., b_n) G(b_1, b_2, ..., b_n)$

	Boolean Functions and Expressions																
Question: How many different Boolean functions of degree 2 are there? Solution: There are 16 of them, F ₁ , F ₂ ,, F ₁₆ :																	
х	у	F_1	F_2	F_3	F_4	F_5	F_6	F_7	F_8	F_9	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅	F ₁
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
24 Nov 2015 CS 320 10																	

Boolean Functions and Expressions

Question: How many different Boolean functions of degree n are there?

Solution:

There are 2ⁿ different n-tuples of 0s and 1s.

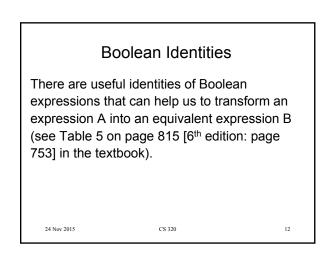
A Boolean function is an assignment of 0 or 1 to each of these 2^n different n-tuples.

Therefore, there are 2^{2^n} different Boolean functions.

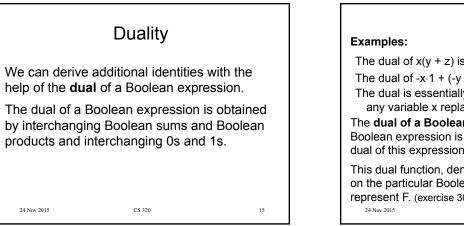
24 Nov 2015

CS 320

11



--x = x, law of double complement x+x = x, idempotent laws $x \cdot x = x$ x+0 = x, identity laws $x \cdot 1 = x$ x+1 = 1, domination laws $x \cdot 0 = 0$ x+y = y+x, commutative laws $x \cdot y = y \cdot x$ 24_{NV2015} (5.32) $\begin{aligned} x+(y+z) &= (x+y)+z, \text{ associative laws} \\ x\cdot(y\cdot z) &= (x\cdot y)\cdot z \\ x+yz &= (x+y)(x+z), \text{ distributive laws} \\ x\cdot(y+z) &= (x\cdot y)+(x\cdot z) \\ -(xy) &= -x + -y, \text{ De Morgan's laws} \\ -(x+y) &= (-x)(-y) \\ x+xy &= x, \text{ Absorption laws} \\ x(x+y) &= x \\ x+-x &= 1, \text{ unit property} \\ x(-x) &= 0, \text{ zero property} \end{aligned}$



Duality

The dual of x(y + z) is x + yz. The dual of $-x \cdot 1 + (-y + z)$ is (-x + 0)((-y)z). The dual is essentially the complement, but with any variable x replaced by -x. (exercise 29, p. 881) The **dual of a Boolean function F** represented by a Boolean expression is the function represented by the dual of this expression. This dual function, denoted by F^d, **does not depend** on the particular Boolean expression used to

represent F. (exercise 30, page 881 [6th ed. p.756]) ^{24 Nov 2015} CS 320 16

Duality

Therefore, an identity between functions represented by Boolean expressions **remains valid** when the duals of both sides of the identity are taken.

We can use this fact, called the **duality principle**, to derive new identities.

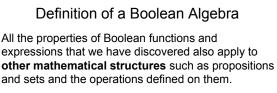
For example, consider the absorption law x(x + y) = x.

By taking the duals of both sides of this identity, we obtain the equation x + xy = x, which is also an identity (and also called an absorption law).

CS 320

24 Nov 2015

17



If we can show that a particular structure is a Boolean algebra, then we know that all results established about Boolean algebras apply to this structure.

For this purpose, we need an **abstract definition** of a Boolean algebra.

CS 320

24 Nov 2015

18

Definition of a Boolean Algebra

Definition: A Boolean algebra is a set B with two binary operations \lor and \land , elements 0 and 1, and a unary operation – such that the following properties hold for all x, y, and z in B: $x \lor 0 = x$ and $x \land 1 = x$ (identity laws)

		· · · ·
$x \lor (-x) = 1$ and	x ∧ (-x) = 0	(domination laws)
$(x \lor y) \lor z = x \lor ((x \land y) \land z = x \land ($		(associative laws)
$x \lor y = y \lor x$ and	$d x \wedge y = y \wedge x$	(commutative laws)
$\begin{array}{l} x \lor (y \land z) = (x \lor \\ x \land (y \lor z) = (x \land \end{array}$		id (distributive laws)
24 Nov 2015	CS 320	19

