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Boolean Algebra

Boolean algebra provides the operations and the rules 
for working with the set {0, 1}.
These are the rules that underlie electronic circuits, 
and the methods we will discuss are fundamental to 
VLSI design.
We are going to focus on three operations:
• Boolean complementation,
• Boolean sum, and
• Boolean product
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Boolean Operations

The complement is denoted by a bar (on the slides, 
we will use a minus sign). It is defined by
- = 1   and   -1 = 0.

The Boolean sum, denoted by + or by OR, has the 
following values:
1 + 1 = 1,    1 + 0 = 1,    0 + 1 = 1,    0 + 0 = 0

The Boolean product, denoted by ⋅ or by AND, has 
the following values:
1 ⋅ 1 = 1,    1 ⋅ 0 = 0,    0 ⋅ 1 = 0,    0 ⋅ 0 = 0
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Boolean Functions and Expressions

Definition: Let B = {0, 1}. The variable x is called a 
Boolean variable if it assumes values only from B.
A function from Bn, the set 
{(x1, x2, …, xn) | xi∈B, 1 ≤ i ≤ n}, to B is called a 
Boolean function of degree n.

Boolean functions can be represented using 
expressions made up from the variables and Boolean 
operations.
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Boolean Functions and Expressions

The Boolean expressions in the variables x1, x2, …, 
xn are defined recursively as follows:
• 0, 1, x1, x2, …, xn are Boolean expressions.
• If E1 and E2 are Boolean expressions, then (-E1), 

(E1E2), and (E1 + E2) are Boolean expressions.

Each Boolean expression represents a Boolean 
function. The values of this function are obtained by 
substituting 0 and 1 for the variables in the 
expression.
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Boolean Functions and Expressions

For example, we can create Boolean expression in 
the variables x, y, and z using the “building blocks”
0, 1, x, y, and z, and the construction rules:
Since x and y are Boolean expressions, so is xy.
Since z is a Boolean expression, so is (-z).
Since xy and (-z) are expressions, so is xy + (-z).
… and so on…
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Boolean Functions and Expressions

Example: Give a Boolean expression for the Boolean 
function F(x, y) as defined by the following table:

x y F(x, y)
0 0 0
0 1 1
1 0 0
1 1 0

Possible solution: F(x, y) = (-x)⋅y
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Boolean Functions and Expressions

There is a simple method for deriving a Boolean 
expression for a function that is defined by a table. 
This method is based on minterms.
Definition: A literal is a Boolean variable or its 
complement. A minterm of the Boolean variables x1, 
x2, …, xn is a Boolean product y1y2…yn, where yi = xi
or yi = -xi.
Hence, a minterm is a product of n literals, with one 
literal for each variable.
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Boolean Functions and Expressions

Definition: The Boolean functions F and G of n 
variables are equal if and only if F(b1, b2, …, bn) = 
G(b1, b2, …, bn) whenever b1, b2, …, bn belong to B.
Two different Boolean expressions that represent the 
same function are called equivalent.
For example, the Boolean expressions xy, xy + 0, and 
xy⋅1 are equivalent.
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Boolean Functions and Expressions

The complement of the Boolean function F is the 
function –F, where –F(b1, b2, …, bn) = 
-(F(b1, b2, …, bn)).
Let F and G be Boolean functions of degree n. The 
Boolean sum F+G and Boolean product FG are then 
defined by
(F + G)(b1, b2, …, bn) = F(b1, b2, …, bn) + G(b1, b2, …, 
bn)
(FG)(b1, b2, …, bn) = F(b1, b2, …, bn) G(b1, b2, …, bn)
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Boolean Functions and Expressions

Question: How many different Boolean functions of 
degree 2 are there?
Solution: There are 16 of them, F1, F2, …, F16:
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Boolean Functions and Expressions

Question: How many different Boolean functions of 
degree n are there?
Solution:
There are 2n different n-tuples of 0s and 1s.
A Boolean function is an assignment of 0 or 1 to each 
of these 2n different n-tuples.
Therefore, there are 22n different Boolean functions.

24 Nov 2015 CS 320 12

Boolean Identities

There are useful identities of Boolean 
expressions that can help us to transform an 
expression A into an equivalent expression B 
(see Table 5 on page 815 [6th edition: page 
753] in the textbook).
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--x = x,  law of double complement
x+x = x, idempotent laws
x⋅x = x

x+0 = x, identity laws
x⋅1 = x

x+1 = 1, domination laws
x⋅0 = 0

x+y = y+x, commutative laws
x⋅y = y⋅x
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x+(y+z) = (x+y)+z, associative laws
x⋅(y⋅z) = (x⋅y)⋅z

x+yz = (x+y)(x+z), distributive laws
x⋅(y+z) = (x⋅y)+(x⋅z)

-(xy) = -x + -y, De Morgan’s laws
-(x+y) = (-x)(-y)
x+xy = x, Absorption laws
x(x+y) = x

x+-x = 1, unit property
x(-x) = 0, zero property
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Duality

We can derive additional identities with the 
help of the dual of a Boolean expression.
The dual of a Boolean expression is obtained 
by interchanging Boolean sums and Boolean 
products and interchanging 0s and 1s.
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Duality
Examples:
The dual of x(y + z) is x + yz.
The dual of -x⋅1 + (-y + z) is (-x + 0)((-y)z).

The dual of a Boolean function F represented by a 
Boolean expression is the function represented by the 
dual of this expression.
This dual function, denoted by Fd, does not depend
on the particular Boolean expression used to 
represent F. (exercise 30, page 881 [6th ed. p.756])

The dual is essentially the complement, but with 
any variable x replaced by -x. (exercise 29, p. 881)
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Duality
Therefore, an identity between functions represented 
by Boolean expressions remains valid when the 
duals of both sides of the identity are taken.
We can use this fact, called the duality principle, to 
derive new identities.
For example, consider the absorption law 
x(x + y) = x.
By taking the duals of both sides of this identity, we 
obtain the equation x + xy = x, which is also an 
identity (and also called an absorption law).
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Definition of a Boolean Algebra
All the properties of Boolean functions and 
expressions that we have discovered also apply to 
other mathematical structures such as propositions 
and sets and the operations defined on them.
If we can show that a particular structure is a Boolean 
algebra, then we know that all results established 
about Boolean algebras apply to this structure.
For this purpose, we need an abstract definition of a 
Boolean algebra.



24 Nov 2015

4

24 Nov 2015 CS 320 19

Definition of a Boolean Algebra
Definition: A Boolean algebra is a set B with two 
binary operations ∨ and ∧, elements 0 and 1, and a 
unary operation – such that the following properties 
hold for all x, y, and z in B:
x ∨ 0 = x   and   x ∧ 1 = x            (identity laws)
x ∨ (-x) = 1   and   x ∧ (-x) = 0    (domination laws)
(x ∨ y) ∨ z = x ∨ (y ∨ z)   and   
(x ∧ y) ∧ z = x ∧ (y ∧ z)   and      (associative laws)
x ∨ y = y ∨ x   and x ∧ y = y ∧ x  (commutative laws)
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)      (distributive laws)
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Boolean Algebras
Examples of Boolean Algebras are:
1. The algebra of all subsets of a set U, with 

+ = ∪, ⋅ = ∩, - = complement,  0 = ∅, 1 = U.
2. The algebra of propositions with symbols 

p1, p2,…,pn, with + = ∨, ⋅ = ∧, - = ¬, 0 = F, 
1 = T.

3. If B1, …, Bn are Boolean Algebras, so is B1×
.. ×Bn, with operations defined coordinate-
wise.
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Logic Gates
Electronic circuits consist of so-called gates. There are three 
basic types of gates.
In each case the input is a Boolean expression and the output 
is another Boolean expression.

x

y

x+y OR gate

AND gate
x

y

xy

x -x
inverter
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Logic Gates
Example: How can we build a circuit that computes 
the function xy + (-x)y ?

xy + (-x)y

x

y

xy

x -x

y

(-x)y
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Multi switch light circuit

Suppose we want a circuit for a light 
controlled by two switches, where 
changing the state of either switch 
changes the state of the light (on or off).

If we let x and y be the states of the 
switches (0 or 1) then the boolean 
expression xy + (-x)(-y) (- = complement) will do 
the job.
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Multi switch light circuit
This is because if both x and y are “on” 

(1) or “off” (0) xy + (-x)(-y) will be 1, and 
otherwise will be 0.

We can generalize this method. For three 
switches the Boolean expression 
xyz + x(-y)(-z) + (-x)y(-z) + (-x)(-y)z will 
work.  

Can you draw circuits implementing these 
expressions?  (see pp. 825, 826 
[6th ed. pp. 763, 764])
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Adding binary integers

If we add two one bit integers x and y we 
get a sum for that bit position plus a 
carry bit.

If we don’t consider a carry bit from a 
lower bit addition we get what’s called a 
half adder.

If we do get consider an input carry bit we 
have a full adder. (see p. 827, 6th ed.765)
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Half Adder

Given input bits x and y, the result bit 
will be x+y unless both x and y are 
1, in which case the result is 0.

This means that we can express the 
result bit as (x+y)(-(xy)), or 
(x+y)(-x + -y).

The carry bit will be xy (we carry if 
both x and y are 1)
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Full Adder
If we add a carry bit c0 from the previous 

order bit sum our result for this bit would 
be 1 if one or three of c0, x, y are 1, and 
0 otherwise.

This means 
xyc0+x(-y)(-c0)+(-x)y(-c0)+(-x)(-y)c0
would work, with carry bit 
xyc0+xy(-c0)+x(-y)c0+(-x)yc0

See p. 827 to check your implementation.
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Minimizing Circuits

A Boolean function can be 
implemented by many different 
Boolean expressions.

Disjunctive normal form, the sum-of-
products expansion we got from the 
table of values of the expression, is 
often not the most efficient.
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Minimizing Circuits

For example, the Boolean expression 
x1(-x2)x3 + x1x2x3 + (-x1)x3

= x1((-x2)+x2)x3 + (-x1)x3 

= x1x3 + (-x1)x3 = (x1 + (-x1))x3 = x3

This last expression is a lot easier to 
compute.  No gates required. Much 
simpler circuit.
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Minimizing Circuits

Karnaugh Maps and the Quine-
McCluskey Method are used for 
simplifying Boolean expressions.

See section 12.4.
We’ll do some examples on the 

board.


