

2

Introduction to Graphs

Definition: A simple graph G = (V, E) consists of V, a nonempty set of vertices, and E, a set of unordered pairs of distinct elements of V called edges.

A simple graph is just like a directed graph, but with no specified direction of its edges.

Sometimes we want to model **multiple connections** between vertices, which is impossible using simple graphs.

In these cases, we have to use multigraphs.

3 Nov 2015

CS 320

Introduction to Graphs

Definition: A multigraph G = (V, E) consists of a set V of vertices, a set E of edges, and a function f from E to { $\{u, v\} \mid u, v \in V, u \neq v\}$.

The edges e_1 and e_2 are called **multiple or parallel** edges if $f(e_1) = f(e_2)$.

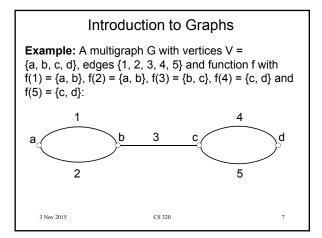
Note:

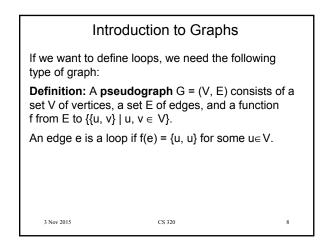
3 Nov 2015

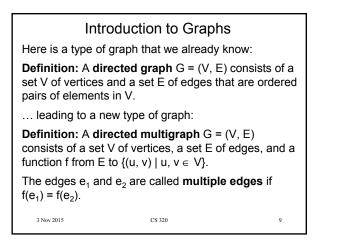
• Edges in multigraphs are not necessarily defined as pairs, but can be of any type.

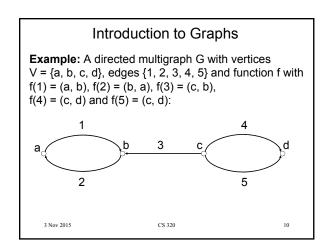
CS 320

• No loops are allowed in multigraphs. $(u \neq v)$.

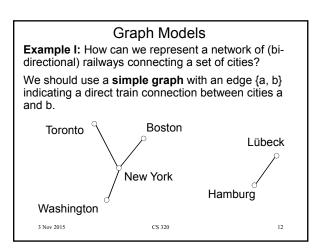


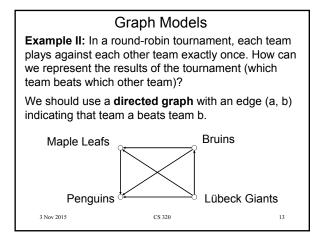


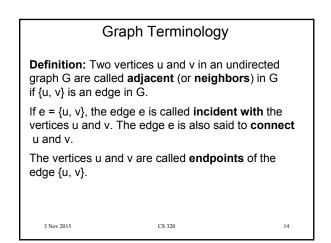


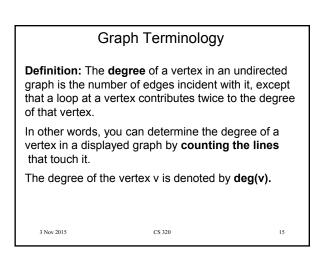


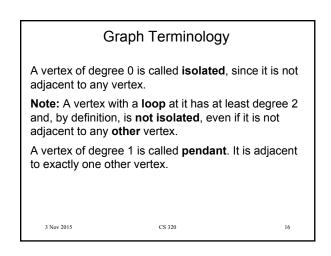
Introduction to Graphs			
Types of Graphs and Their Properties			
Туре	Edges	Multiple Edges	? Loops?
simple graph	undirected	no	no
multigraph	undirected	yes	no
pseudograph	undirected	yes	yes
directed graph	directed	no	yes
dir. multigraph	directed	yes	yes
3 Nov 2015	CS 320		11

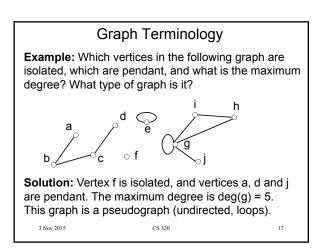


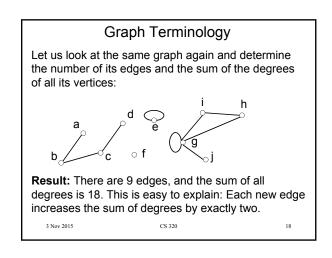




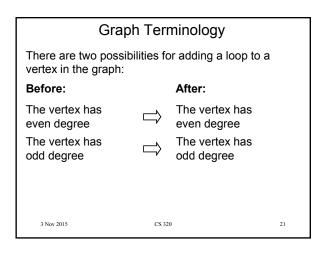


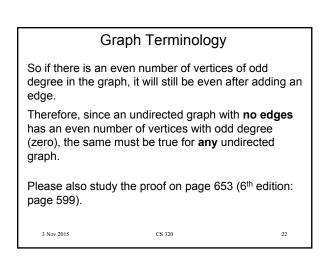






Graph Terminology Graph Terminology The Handshaking Theorem: Let G = (V, E) be an Theorem: An undirected graph has an even number undirected graph with e edges. Then of vertices of odd degree. $2e = \sum_{v \in V} deg(v)$ Idea: There are three possibilities for adding an edge to connect two vertices in the graph: Note: This theorem holds even if multiple edges and/or loops are present. Before: After: Both vertices have Both vertices have Example: How many edges are there in a graph with even degree odd degree 10 vertices, each of degree 6? Both vertices have Both vertices have Solution: The sum of the degrees of the vertices is odd degree even degree 6.10 = 60. According to the Handshaking Theorem. One vertex has odd One vertex has even it follows that 2e = 60, so there are 30 edges. Г degree, the other even degree, the other odd 3 Nov 2015 CS 320 CS 320 19 3 Nov 2015 20





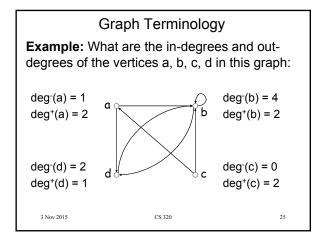
Graph Terminology Definition: When (u, v) is an edge of the graph G with directed edges, u is said to be adjacent to v, and v is said to be adjacent from u. The vertex u is called the initial vertex of (u, v), and v is called the terminal vertex of (u, v). The initial vertex and terminal vertex of a loop are the same.

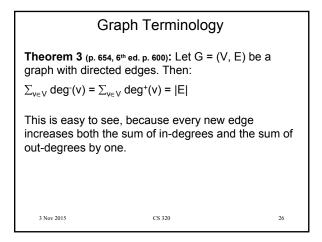
CS 320

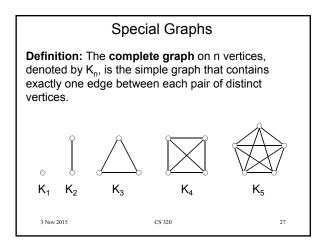
3 Nov 2015

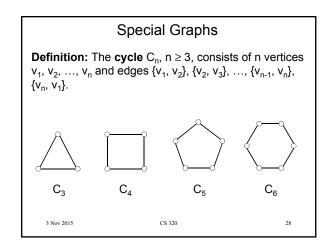
23

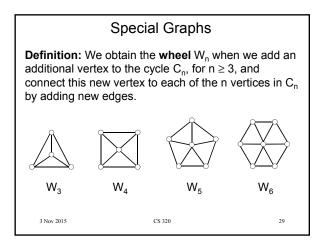
Graph Terminology Definition: In a graph with directed edges, the indegree of a vertex v, denoted by deg (v), is the number of edges with v as their terminal vertex. The out-degree of v, denoted by deg (v), is the number of edges with v as their initial vertex. Question: How does adding a loop to a vertex change the in-degree and out-degree of that vertex? Answer: It increases both the in-degree and the outdegree by one.

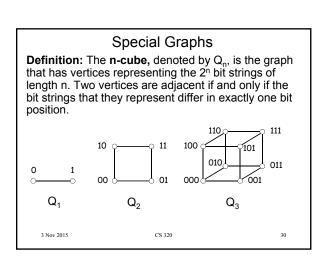


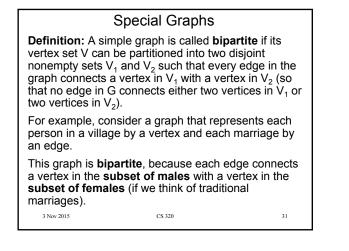


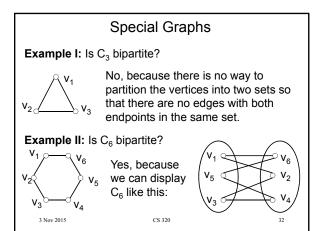


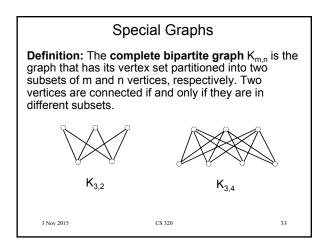


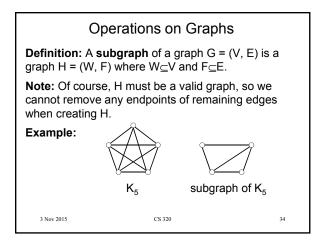


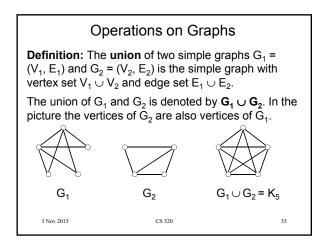


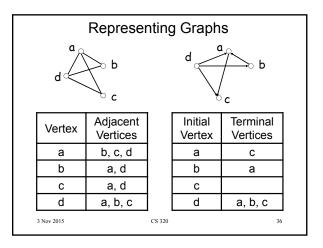




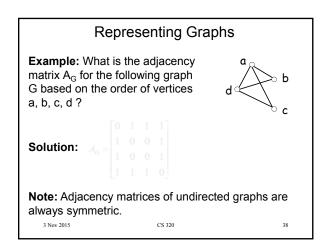


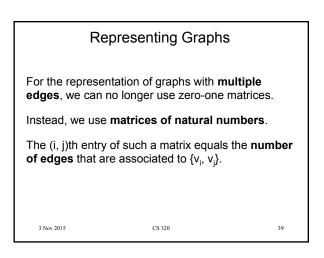


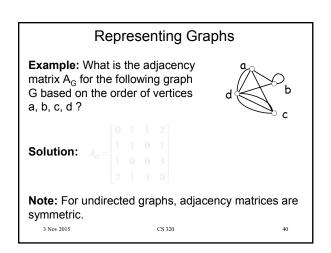


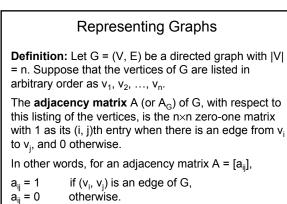


Representing Graphs Definition: Let G = (V, E) be a simple graph with |V| =n. Suppose that the vertices of G are listed in arbitrary order as v_1, v_2, \ldots, v_n . The adjacency matrix A (or A_G) of G, with respect to this listing of the vertices, is the n×n zero-one matrix with 1 as its (i, j)th entry when v_i and v_i are adjacent, and 0 otherwise. In other words, for an adjacency matrix $A = [a_{ij}]$, a_{ii} = 1 if {v_i, v_i} is an edge of G, a_{ij} = 0 otherwise. CS 320 3 Nov 2015 37









CS 320

41

3 Nov 2015

Example: What is the adjacency matrix A_G for the following graph G based on the order of vertices a, b, c, d? **Solution:** $A_{G} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$

7

Representing Graphs Definition: Let G = (V, E) be an undirected graph with |V| = n and |E| = m. Suppose that the vertices and edges of G are listed in arbitrary order as $v_1, v_2, ..., v_n$ and $e_1, e_2, ..., e_m$, respectively. The **incidence matrix** of G with respect to this listing of the vertices and edges is the n×m zero-one matrix with 1 as its (i, j)th entry when edge e_j is incident with v_j , and 0 otherwise.

In other words, for an incidence matrix $M = [m_{ii}]$,

 $\begin{array}{ll} m_{ij} = 1 & \quad \mbox{if edge } e_{j} \mbox{ is incident with } v_{i} \\ m_{ij} = 0 & \quad \mbox{otherwise.} \end{array}$

3 Nov 2015

CS 320

43

