
1

5 Nov 2015 CS 320 1

Isomorphism of Graphs

Definition: The simple graphs G1 = (V1, E1) and G2 =
(V2, E2) are isomorphic if there is a bijection (an one-
to-one and onto function) f from V1 to V2 with the
property that a and b are adjacent in G1 if and only if
f(a) and f(b) are adjacent in G2, for all a and b in V1.
Such a function f is called an isomorphism.
In other words, G1 and G2 are isomorphic if their
vertices can be ordered in such a way that the
adjacency matrices MG1 and MG2 are identical.

5 Nov 2015 CS 320 2

Isomorphism of Graphs

From a visual standpoint, G1 and G2 are isomorphic if
they can be arranged in such a way that their
displays are identical (of course without changing
adjacency).
Unfortunately, for two simple graphs, each with n
vertices, there are n! possible isomorphisms that
we have to check in order to show that these graphs
are isomorphic.
However, showing that two graphs are not isomorphic
can be easy.

5 Nov 2015 CS 320 3

Isomorphism of Graphs
For this purpose we can check invariants, that is,
properties that two isomorphic simple graphs must
both have.
For example, they must have
• the same number of vertices,
• the same number of edges, and
• the same degrees of vertices.
Note that two graphs that differ in any of these
invariants are not isomorphic, but two graphs that
match in all of them are not necessarily isomorphic.

5 Nov 2015 CS 320 4

Isomorphism of Graphs
Example I: Are the following two graphs isomorphic?

d

a

b

c

e

d

a

b
c

e

Solution: Yes, they are isomorphic, because they can
be arranged to look identical. You can see this if in the
right graph you move vertex b to the left of the edge
{a, c}. Then the isomorphism f from the left to the right
graph is: f(a) = e, f(b) = a,
f(c) = b, f(d) = c, f(e) = d.

5 Nov 2015 CS 320 5

Isomorphism of Graphs
Example II: How about these two graphs?

d

a
b

c

e

d

a

b
c

e

Solution: No, they are not isomorphic, because they
differ in the degrees of their vertices.
Vertex d in right graph is of degree one, but there is
no such vertex in the left graph.

5 Nov 2015 CS 320 6

Counting Paths Between Vertices

Theorem (p. 688, p. 628 6th ed.). Suppose G is
a graph with vertices {v1,v2,…,vn} and A
is the nxn adjacency matrix of G.

G can be directed or undirected and
multiple edges and loops are allowed.

Then the (i,j)th entry of Ar is the number of
different paths of length r from vi to vj.

2

5 Nov 2015 CS 320 7

Proof: We use induction on r, path length.
Base Case: r=1. True by definition of the

adjacency matrix A = A1.
Aij = the number of edges from vi to vj.
Induction Step. Suppose true for r-1.
(Ar)ij = k=1

n (Ar-1)ik * Akj.
Each term of the sum represents the number of

paths of length r-1 from vi to vk, multiplied by
the number of edges from vk to vj.

The sum of these over k is exactly the number
of paths of length r from vi to vj.

5 Nov 2015 CS 320 8

Counting paths between vertices

Recall: we have seen this theorem
before, when we were looking at
transitive closures of relations, at
least for the case of graphs without
multiple edges.

5 Nov 2015 CS 320 9

Example
Example: Use the adjacency
matrix AG for the following graph G
based on the order of vertices a, b,
c, d, to compute paths of various
lengths in the graph. There are no
paths of length > 3.

a
b

c
d

5 Nov 2015 CS 320 10

Shortest Path Problems
We can assign weights to the edges of graphs, for
example to represent the distance between cities in a
railway network:

Chicago

Toronto

New York

Boston

600

700

200

650

5 Nov 2015 CS 320 11

Shortest Path Problems
Such weighted graphs can also be used to model
computer networks with response times or costs as
weights.
One of the most interesting questions that we can
investigate with such graphs is:
What is the shortest path between two vertices in
the graph, that is, the path with the minimal sum of
weights along the way?
This corresponds to the shortest train connection or
the fastest connection in a computer network.

5 Nov 2015 CS 320 12

Dijkstra’s Algorithm

Dijkstra’s algorithm is an iterative procedure that finds
the shortest path between two vertices a and z in a
weighted graph.
It proceeds by finding the length of the shortest path
from a to successive vertices and adding these
vertices to a distinguished set of vertices S.
The algorithm terminates once it reaches the vertex z.

3

5 Nov 2015 CS 320 13

Dijkstra’s Algorithm
procedure Dijkstra(G: weighted connected simple

graph with vertices a = v0, v1, …, vn = z and
positive weights w(vi, vj), where w(vi, vj) = ∞
if {vi, vj} is not an edge in G)

for i := 1 to n
L(vi) := ∞

L(a) := 0
S := ∅
{the labels are now initialized so that the label of

a is zero and all other labels are ∞, and the
distinguished set of vertices S is empty}

5 Nov 2015 CS 320 14

Dijkstra’s Algorithm

while z∉S
begin

u := a vertex not in S with minimal L(u)
S := S∪{u}
for all vertices v not in S

if L(u) + w(u, v) < L(v) then L(v) := L(u) + w(u, v)
{this adds a vertex to S with minimal label and
updates the labels of vertices not in S}

end {L(z) = length of shortest path from a to z}

5 Nov 2015 CS 320 15

Dijkstra’s Algorithm
Example

:

a

b d

z

ec

4

2

1

5

8

10

2

6

30

∞ ∞

∞ ∞

∞

Step 0
5 Nov 2015 CS 320 16

Dijkstra’s Algorithm
Example

:

a

b d

z

ec

4

2

1

5

8

10

2

6

30

∞ ∞

∞ ∞

∞

Step 1

4 (a)

2 (a)

5 Nov 2015 CS 320 17

Dijkstra’s Algorithm
Example

:

a

b d

z

ec

4

2

1

5

8

10

2

6

30

∞ ∞

∞ ∞

∞

Step 2

4 (a)

2 (a)

3 (a, c) 10 (a, c)

12 (a, c)

5 Nov 2015 CS 320 18

Dijkstra’s Algorithm
Example

:

a

b d

z

ec

4

2

1

5

8

10

2

6

30

∞ ∞

∞ ∞

∞

Step 3

4 (a)

2 (a)

3 (a, c) 10 (a, c)

12 (a, c)

8 (a, c, b)

4

5 Nov 2015 CS 320 19

Dijkstra’s Algorithm
Example

:

a

b d

z

ec

4

2

1

5

8

10

2

6

30

∞ ∞

∞ ∞

∞

Step 4

4 (a)

2 (a)

3 (a, c) 10 (a, c)

12 (a, c)

8 (a, c, b)

10 (a, c, b, d)

14 (a, c, b, d)

5 Nov 2015 CS 320 20

Dijkstra’s Algorithm
Example

:

a

b d

z

ec

4

2

1

5

8

10

2

6

30

∞ ∞

∞ ∞

∞

Step 5

4 (a)

2 (a)

3 (a, c) 10 (a, c)

12 (a, c)

8 (a, c, b)

10 (a, c, b, d)

14 (a, c, b, d)13 (a, c, b, d, e)

5 Nov 2015 CS 320 21

Dijkstra’s Algorithm
Example

:

a

b d

z

ec

4

2

1

5

8

10

2

6

30

∞ ∞

∞ ∞

∞

Step 6

4 (a)

2 (a)

3 (a, c) 10 (a, c)

12 (a, c)

8 (a, c, b)

10 (a, c, b, d)

14 (a, c, b, d)13 (a, c, b, d, e)

5 Nov 2015 CS 320 22

Dijkstra’s Algorithm
Theorem: Dijkstra’s algorithm finds the length of a
shortest path between two vertices in a connected
simple undirected weighted graph.

Theorem: Dijkstra’s algorithm uses O(n2) operations
(additions and comparisons) to find the length of the
shortest path between two vertices in a connected
simple undirected weighted graph.

Please take a look at pages 709 to 714 (6th ed. 651 to
653) for the book’s treatment of Dijkstra’s algorithm.

5 Nov 2015 CS 320 23

Proof that Dijkstra’s Algorithm works
procedure Dijkstra(G: vertices a = v0, v1, …, vn = z,

w(vi, vj)>0, w(vi, vj) = ∞ if {vi, vj} not an edge in G)
for i := 1 to n {L(vi) := ∞;L(a) := 0;S := ∅}
// loop invariant:
∀ v ∈ S, L(v) = length of shortest path in G from a to v, and
∀ u ∉ S, L(u) = length of shortest path a to u, such that all

vertices in the path except u are in S.
while z∉S
begin

u := a vertex not in S with minimal L(u)
S := S∪{u}
for all vertices v not in S

if L(u) + w(u, v) < L(v) then L(v) := L(u) + w(u, v)
end // n passes through the loop, at most 4n operations each.
{L(z) = length of shortest path from a to z}

5 Nov 2015 CS 320 24

Finding the shortest path
We can modify Dijkstra’s algorithm to find not

just the length of the shortest path, but the
path itself.

For each vertex v, keep a list of the shortest
path so far to v, as a list of vertices.

Initially L(v) = ∞ and the list is empty.
Each time we reset L(v) by

L(v) := L(u) + w(u, v)
we reset v’s list to be u’s list followed by v

5

5 Nov 2015 CS 320 25

The Traveling Salesman Problem
The traveling salesman problem is one of the
classical problems in computer science.
A traveling salesman wants to visit a number of cities
and then return to his starting point. Of course he
wants to save time and energy, so he wants to
determine the shortest path for his trip.
We can represent the cities and the distances
between them by a weighted, complete, undirected
graph.
The problem then is to find the circuit of minimum
total weight that visits each vertex exactly once.

5 Nov 2015 CS 320 26

The Traveling Salesman Problem
Example: What path would the traveling salesman
take to visit the following cities?

Chicago

Toronto

New York

Boston

600

700

200

650 550
700

Solution: The shortest path is Boston, New York,
Chicago, Toronto, Boston (2,000 miles).

5 Nov 2015 CS 320 27

The Traveling Salesman Problem
Question: Given n vertices, how many different
cycles Cn can we form by connecting these vertices
with edges?
Solution: We first choose a starting point. Then we
have (n – 1) choices for the second vertex in the
cycle, (n – 2) for the third one, and so on, so there are
(n – 1)! choices for the whole cycle.
However, this number includes identical cycles that
were constructed in opposite directions. Therefore,
the actual number of different cycles Cn is (n – 1)!/2.

5 Nov 2015 CS 320 28

The Traveling Salesman Problem
Unfortunately, no algorithm solving the traveling
salesman problem with polynomial worst-case time
complexity has yet been devised.
This means that for graphs with a large number of
vertices, solving the traveling salesman problem is
impractical.
In these cases, we can use approximation
algorithms that determine a path whose length may
be slightly larger than the traveling salesman’s path,
but can be computed with polynomial time complexity.
For example, artificial neural networks can do such
an efficient approximation task.

5 Nov 2015 CS 320 29

The Kőnigsberg bridge problem (sec 10.5)

The town of Kőnigsberg had seven
bridges connecting parts of the city.

People wondered if one could walk
over the bridges, crossing each
bridge exactly once.

See
http://mathforum.org/isaac/problems/bridges1.html

5 Nov 2015 CS 320 30

The Kőnigsberg bridge problem

This problem was solved by the
Swiss mathematician Euler in 1736.
Perhaps his was the first result in
graph theory.

6

5 Nov 2015 CS 320 31

Euler circuits & paths

Def. An Euler circuit is a simple
circuit containing every edge of the
graph. (“simple” means it does not
contain the same edge twice).

Def. An Euler path is a simple path
containing every edge of the graph.
(end vertex may differ from start
vertex)

5 Nov 2015 CS 320 32

Euler circuits

Theorem 1: (p. 696, 6th ed. p. 636)
A connected multigraph with at least
two vertices has an Euler circuit iff
each vertex has even degree.

Proof: This is a simple but powerful
result, and it’s not hard to see why
it’s true

5 Nov 2015 CS 320 33

If the graph has an Euler circuit then
each time the circuit enters a vertex
there must be another edge for it to
leave. The exception is the start
vertex. When the path enters this
vertex at the end of the circuit the
matching edge is the first edge on
the path.

5 Nov 2015 CS 320 34

End of proof of Theorem 1, p 696
Conversely, if every vertex has even degree, if we start

a path at an arbitrary vertex and keep going as long
as possible, selecting only unused edges, we will
have to stop only when we get to the start vertex.
This is because every vertex has even degree, so if
there is a way in, there is a way out. If we have used
every edge we are done.

If we have not used every edge, start another path at
the first vertex, u, on our route that has an unused
edge. If we keep going as long as possible we’ll end
at u. We can add this new path to our original one,
taking it the first time we visit u.

Repeating this process we’ll construct a circuit which
uses every edge in the graph exactly once, and is
thus an Euler circuit.

5 Nov 2015 CS 320 35

Euler Paths

Theorem 2 (p. 697, 6th ed. p. 637).
A connected multigraph has an Euler
path but not an Euler circuit iff it has
exactly two vertices of odd degree.

Note that this theorem tells us that the
Kőnigsberg bridge problem has no
solution.

5 Nov 2015 CS 320 36

Proof of Th. 2:
Suppose we start a path at one of the vertices

of odd degree. If we add one more edge,
connecting both vertices of odd degree then
Th. 1 tells us we have a circuit.

Removing this extra edge gives us an Euler
path.

If we have more than two vertices of odd
degree and could construct an Euler path we
could add one extra edge and get an Euler
circuit. But this would contradict Th. 1 since
we would still have vertices of odd degree.

