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Isomorphism of Graphs

Definition: The simple graphs G1 = (V1, E1) and G2 = 
(V2, E2) are isomorphic if there is a bijection (an one-
to-one and onto function) f from V1 to V2 with the 
property that a and b are adjacent in G1 if and only if 
f(a) and f(b) are adjacent in G2, for all a and b in V1.
Such a function f is called an isomorphism.
In other words, G1 and G2 are isomorphic if their 
vertices can be ordered in such a way that the 
adjacency matrices MG1 and MG2 are identical.
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Isomorphism of Graphs

From a visual standpoint, G1 and G2 are isomorphic if 
they can be arranged in such a way that their 
displays are identical (of course without changing 
adjacency).
Unfortunately, for two simple graphs, each with n 
vertices, there are n! possible isomorphisms that 
we have to check in order to show that these graphs 
are isomorphic.
However, showing that two graphs are not isomorphic 
can be easy.
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Isomorphism of Graphs
For this purpose we can check invariants, that is, 
properties that two isomorphic simple graphs must 
both have.
For example, they must have
• the same number of vertices,
• the same number of edges, and
• the same degrees of vertices.
Note that two graphs that differ in any of these 
invariants are not isomorphic, but two graphs that 
match in all of them are not necessarily isomorphic.
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Isomorphism of Graphs
Example I: Are the following two graphs isomorphic?

d

a

b

c

e

d

a

b
c

e

Solution: Yes, they are isomorphic, because they can 
be arranged to look identical. You can see this if in the 
right graph you move vertex b to the left of the edge 
{a, c}. Then the isomorphism f from the left to the right 
graph is: f(a) = e, f(b) = a, 
f(c) = b, f(d) = c, f(e) = d. 
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Isomorphism of Graphs
Example II: How about these two graphs?

d

a
b

c

e

d

a

b
c

e

Solution: No, they are not isomorphic, because they 
differ in the degrees of their vertices.
Vertex d in right graph is of degree one, but there is 
no such vertex in the left graph.
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Counting Paths Between Vertices

Theorem (p. 688, p. 628 6th ed.). Suppose G is 
a graph with vertices {v1,v2,…,vn} and A 
is the nxn adjacency matrix of G.

G can be directed or undirected and 
multiple edges and loops are allowed.

Then the (i,j)th entry of Ar is the number of 
different paths of length r from vi to vj.
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Proof:  We use induction on r, path length.
Base Case: r=1.  True by definition of the 

adjacency matrix A = A1. 
Aij = the number of edges from vi to vj.
Induction Step. Suppose true for r-1.
(Ar)ij = k=1

n (Ar-1)ik * Akj.
Each term of the sum represents the number of 

paths of length r-1 from vi to vk, multiplied by 
the number of edges from vk to vj.

The sum of these over k is exactly the number 
of paths of length r from vi to vj.

5 Nov 2015 CS 320 8

Counting paths between vertices

Recall:  we have seen this theorem 
before, when we were looking at 
transitive closures of relations, at 
least for the case of graphs without 
multiple edges.
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Example
Example: Use the adjacency 
matrix AG for the following graph G 
based on the order of vertices a, b, 
c, d, to compute paths of various 
lengths in the graph. There are no 
paths of length > 3.

a
b

c
d

5 Nov 2015 CS 320 10

Shortest Path Problems
We can assign weights to the edges of graphs, for 
example to represent the distance between cities in a 
railway network:

Chicago

Toronto

New York

Boston

600

700

200

650
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Shortest Path Problems
Such weighted graphs can also be used to model 
computer networks with response times or costs as 
weights.
One of the most interesting questions that we can 
investigate with such graphs is:
What is the shortest path between two vertices in 
the graph, that is, the path with the minimal sum of 
weights along the way?
This corresponds to the shortest train connection or 
the fastest connection in a computer network.
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Dijkstra’s Algorithm

Dijkstra’s algorithm is an iterative procedure that finds 
the shortest path between two vertices a and z in a 
weighted graph.
It proceeds by finding the length of the shortest path 
from a to successive vertices and adding these 
vertices to a distinguished set of vertices S. 
The algorithm terminates once it reaches the vertex z.



3

5 Nov 2015 CS 320 13

Dijkstra’s Algorithm
procedure Dijkstra(G: weighted connected simple 

graph with vertices a = v0, v1, …, vn = z and 
positive weights w(vi, vj), where w(vi, vj) = ∞
if {vi, vj} is not an edge in G)

for i := 1 to n
L(vi) := ∞

L(a) := 0
S := ∅
{the labels are now initialized so that the label of 

a is zero and all other labels are ∞, and the 
distinguished set of vertices S is empty}
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Dijkstra’s Algorithm

while z∉S
begin 

u := a vertex not in S with minimal L(u)
S := S∪{u}
for all vertices v not in S

if L(u) + w(u, v) < L(v) then L(v) := L(u) + w(u, v)
{this adds a vertex to S with minimal label and 
updates the labels of vertices not in S}

end {L(z) = length of shortest path from a to z}

5 Nov 2015 CS 320 15

Dijkstra’s Algorithm
Example

:

a

b d

z

ec

4

2

1

5

8

10

2

6

30

∞ ∞

∞ ∞

∞

Step 0
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Dijkstra’s Algorithm
Example

:

a

b d

z

ec

4

2

1

5

8

10

2

6

30

∞ ∞

∞ ∞

∞

Step 1

4 (a)

2 (a)
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Dijkstra’s Algorithm
Example

:

a

b d

z

ec

4

2

1

5

8

10

2

6

30

∞ ∞

∞ ∞

∞

Step 2

4 (a)

2 (a)

3 (a, c) 10 (a, c)

12 (a, c)
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Dijkstra’s Algorithm
Example

:

a

b d

z

ec

4

2

1

5

8

10

2

6

30

∞ ∞

∞ ∞

∞

Step 3

4 (a)

2 (a)

3 (a, c) 10 (a, c)

12 (a, c)

8 (a, c, b)
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Dijkstra’s Algorithm
Example

:

a

b d

z

ec

4

2

1

5

8

10

2

6

30

∞ ∞

∞ ∞

∞

Step 4

4 (a)

2 (a)

3 (a, c) 10 (a, c)

12 (a, c)

8 (a, c, b)

10 (a, c, b, d)

14 (a, c, b, d)
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Dijkstra’s Algorithm
Example

:

a

b d

z

ec

4

2

1

5

8

10

2

6

30

∞ ∞

∞ ∞

∞

Step 5

4 (a)

2 (a)

3 (a, c) 10 (a, c)

12 (a, c)

8 (a, c, b)

10 (a, c, b, d)

14 (a, c, b, d)13 (a, c, b, d, e)
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Dijkstra’s Algorithm
Example

:

a

b d

z

ec

4

2

1

5

8

10

2

6

30

∞ ∞

∞ ∞

∞

Step 6

4 (a)

2 (a)

3 (a, c) 10 (a, c)

12 (a, c)

8 (a, c, b)

10 (a, c, b, d)

14 (a, c, b, d)13 (a, c, b, d, e)
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Dijkstra’s Algorithm
Theorem: Dijkstra’s algorithm finds the length of a 
shortest path between two vertices in a connected 
simple undirected weighted graph. 

Theorem: Dijkstra’s algorithm uses O(n2) operations 
(additions and comparisons) to find the length of the 
shortest path between two vertices in a connected 
simple undirected weighted graph.

Please take a look at pages 709 to 714 (6th ed. 651 to 
653) for the book’s treatment of Dijkstra’s algorithm.
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Proof that Dijkstra’s Algorithm works
procedure Dijkstra(G: vertices a = v0, v1, …, vn = z, 

w(vi, vj)>0, w(vi, vj) = ∞ if {vi, vj} not an edge in G)
for i := 1 to n {L(vi) := ∞;L(a) := 0;S := ∅}
// loop invariant: 
∀ v ∈ S, L(v) = length of shortest path in G from a to v, and
∀ u ∉ S, L(u) = length of shortest path a to u, such that all 

vertices in the path except u are in S.
while z∉S
begin 

u := a vertex not in S with minimal L(u)
S := S∪{u}
for all vertices v not in S

if L(u) + w(u, v) < L(v) then L(v) := L(u) + w(u, v)
end // n passes through the loop, at most 4n operations each.
{L(z) = length of shortest path from a to z}
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Finding the shortest path
We can modify Dijkstra’s algorithm to find not 

just the length of the shortest path, but the 
path itself.

For each vertex v, keep a list of the shortest 
path so far to v, as a list of vertices.

Initially L(v) = ∞ and the list is empty.
Each time we reset L(v) by 

L(v) := L(u) + w(u, v) 
we reset v’s list to be u’s list followed by v
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The Traveling Salesman Problem
The traveling salesman problem is one of the 
classical problems in computer science.
A traveling salesman wants to visit a number of cities 
and then return to his starting point. Of course he 
wants to save time and energy, so he wants to 
determine the shortest path for his trip.
We can represent the cities and the distances 
between them by a weighted, complete, undirected 
graph.
The problem then is to find the circuit of minimum 
total weight that visits each vertex exactly once.
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The Traveling Salesman Problem
Example: What path would the traveling salesman 
take to visit the following cities?

Chicago

Toronto

New York

Boston

600

700

200

650 550
700

Solution: The shortest path is Boston, New York, 
Chicago, Toronto, Boston (2,000 miles).
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The Traveling Salesman Problem
Question: Given n vertices, how many different 
cycles Cn can we form by connecting these vertices 
with edges?
Solution: We first choose a starting point. Then we 
have (n – 1) choices for the second vertex in the 
cycle, (n – 2) for the third one, and so on, so there are 
(n – 1)! choices for the whole cycle.
However, this number includes identical cycles that 
were constructed in opposite directions. Therefore, 
the actual number of different cycles Cn is (n – 1)!/2.
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The Traveling Salesman Problem
Unfortunately, no algorithm solving the traveling 
salesman problem with polynomial worst-case time 
complexity has yet been devised.
This means that for graphs with a large number of 
vertices, solving the traveling salesman problem is 
impractical.
In these cases, we can use approximation 
algorithms that determine a path whose length may 
be slightly larger than the traveling salesman’s path, 
but can be computed with polynomial time complexity.
For example, artificial neural networks can do such 
an efficient approximation task.
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The Kőnigsberg bridge problem (sec 10.5)

The town of Kőnigsberg had seven 
bridges connecting parts of the city.

People wondered if one could walk 
over the bridges, crossing each 
bridge exactly once.

See 
http://mathforum.org/isaac/problems/bridges1.html
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The Kőnigsberg bridge problem

This problem was solved by the 
Swiss mathematician Euler in 1736.  
Perhaps his was the first result in 
graph theory.
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Euler circuits & paths

Def.  An Euler circuit is a simple 
circuit containing every edge of the 
graph.  (“simple” means it does not 
contain the same edge twice).

Def. An Euler path is a simple path 
containing every edge of the graph. 
(end vertex may differ from start 
vertex)
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Euler circuits

Theorem 1: (p. 696, 6th ed. p. 636) 
A connected multigraph with at least 
two vertices has an Euler circuit iff
each vertex has even degree.

Proof:  This is a simple but powerful 
result, and it’s not hard to see why 
it’s true
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If the graph has an Euler circuit then 
each time the circuit enters a vertex 
there must be another edge for it to 
leave. The exception is the start 
vertex.  When the path enters this 
vertex at the end of the circuit the 
matching edge is the first edge on 
the path.
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End of proof of Theorem 1, p 696
Conversely, if every vertex has even degree, if we start 

a path at an arbitrary vertex and keep going as long 
as possible, selecting only unused edges, we will 
have to stop only when we get to the start vertex.  
This is because every vertex has even degree, so if 
there is a way in, there is a way out. If we have used 
every edge we are done.

If we have not used every edge, start another path at 
the first vertex, u, on our route that has an unused 
edge.  If we keep going as long as possible we’ll end 
at u.  We can add this new path to our original one, 
taking it the first time we visit u.

Repeating this process we’ll construct a circuit which 
uses every edge in the graph exactly once, and is 
thus an Euler circuit.
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Euler Paths

Theorem 2 (p. 697, 6th ed. p. 637). 
A connected multigraph has an Euler 
path but not an Euler circuit iff it has 
exactly two vertices of odd degree.

Note that this theorem tells us that the 
Kőnigsberg bridge problem has no 
solution.
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Proof of Th. 2:
Suppose we start a path at one of the vertices 

of odd degree.  If we add one more edge, 
connecting both vertices of odd degree then 
Th. 1 tells us we have a circuit.

Removing this extra edge gives us an Euler 
path.

If we have more than two vertices of odd 
degree and could construct an Euler path we 
could add one extra edge and get an Euler 
circuit.  But this would contradict Th. 1 since 
we would still have vertices of odd degree.


