
1 Dec 2015

1

More Boolean Algebra

(from 12.2)
Definition: Because every Boolean 

function can be represented using 
the Boolean operators ⋅, +, and   ̅ , 
we say that the set  {⋅, + ,  ̅ } is 
functionally complete.
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Functionally complete

The set {⋅,  ̅ } is functionally 
complete since x + y തݕݔ̅ = .

The set {+,  ̅ } is functionally 
complete since  xy ݔ̅ = . തݕ +
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nand operator

The nand operator (not and), denoted 
by |, is defined by 1|1 = 0, and                 1|0 = 0|1 = 0|0 = 1. The set 
consisting of just the one operator 
nand {|} is functionally complete. Note that ̅ݔ = x | x  and xy = 
(x|y)|(x|y). 
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nor operator

The nor operator (not or), denoted by ↓, is defined by 0 ↓ 0 = 1, and                 1 ↓ 0 = 0 ↓ 1 = 1 ↓ 1 = 0. The set 
consisting of just the one operator 
nor {↓} is functionally complete. (see Exercises 15 and 16)
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Adding binary integers

If we add two one bit integers x and y we 
get a sum for that bit position plus a 
carry bit.

If we don’t consider a carry bit from a 
lower bit addition we get what’s called a 
half adder.

If we do consider an input carry bit we 
have a full adder. (see p. 827, 6th ed.765)
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Half Adder

Given input bits x and y, the result bit 
will be x+y unless both x and y are 
1, in which case the result is 0.

This means that we can express the 
result bit as (x+y)(xy), or 
(x+y)(x + y).

The carry bit will be xy (we carry if 
both x and y are 1)
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Full Adder
If we add a carry bit c0 from the previous 

order bit sum our result for this bit would 
be 1 if one or three of c0, x, y are 1, and 
0 otherwise.

This means 
xyc0+xyc0+xyc0+xyc0 would work, with 
carry bit 
xyc0+xyc0+xyc0+xyc0

See p. 827 to check your implementation.

(from page 827)
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Minimizing Circuits

A Boolean function can be 
implemented by many different 
Boolean expressions.

Disjunctive normal form, the sum-of-
products expansion we got from the 
table of values of the expression, is 
often not the most efficient.
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Minimizing Circuits

For example, the Boolean expression 
x1x2x3 + x1x2x3 + x1x3

= x1(x2+x2)x3 + x1x3 

= x1x3 + x1x3 = (x1 + x1)x3 = x3

This last expression is a lot easier to 
compute.  No gates required. Much 
simpler circuit.
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Minimizing Circuits

Karnaugh Maps and the Quine-
McCluskey Method are used for 
simplifying Boolean expressions.

See section 12.4.
We’ll do some examples on the 

board.
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Karnaugh Maps
yz yz yz yz

x 1 1
x 1 1

This Karnaugh map represents the Boolean 
expression 

xyz + xyz + xyz + xyz

The idea is to use the picture to help decide 
which terms can be combined
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Karnaugh Maps

The idea is to combine cells which are 
adjacent horizontally or vertically, since 
they can be simplified.

The grouped cells can be described by a 
simpler expression.

Cells on the right edge are adjacent to 
cells on the left edge, and cells on the 
top are adjacent to cells on the bottom.
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Karnaugh Maps
yz yz yz yz

x 1 1
x 1 1

If we group the adjacent cells in the top and 
bottom row we get the expression 

xz + xy, which is simpler than

xyz + xyz + xyz + xyz
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Karnaugh Maps, 4 variables
yz yz yz yz

wx 1
wx 1 1 1
wx 1 1
wx 1

Here the grouping shows we can express the 
sum as yz + xz + wxy
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Karnaugh Maps, 4 variables
yz yz yz yz

wx 1
wx 1 1 1
wx 1 1
wx 1

Nonoverlapping grouping would give
wxyz + xyz + yz, more complex than 

yz + xz + wxy
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Karnaugh Maps

See the book, page 836, 
for a description of 
“don’t care conditions”.  
Sometimes some cells in a Karnaugh

map are irrelevant to our purpose 
and we can include them or not, 
which can allow a simpler result.
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Quine-McCluskey Method

This method is a little trickier to 
describe, but can be automated for 
larger Boolean expressions, a real 
advantage.
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Quine-McCluskey
The idea is to make a table, with a row for 

each term in the original Boolean 
expression.

We form a bit string for each term, e.g. 
110 for xyz, and arrange the rows by 
order of decreasing number of 1s. 

Then we combine terms differing in only 
one position (1 & 0), form another 
column, and repeat if possible.
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Quine-McCluskey

Once we have simplified expressions 
we make another table to see how 
many of these we need to actually 
cover the original terms.

More than one simplification might do 
the job.

See the book, pp 837-843, and the 
examples we’ll do on the board.

See also

http://en.wikipedia.org/wiki/Karnaugh

http://en.wikipedia.org/wiki/Gray_code

http://en.wikipedia.org/wiki/Quine-
McCluskey_algorithm
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