More Boolean Algebra

(from 12.2)

Definition: Because every Boolean function can be represented using the Boolean operators \cdot , +, and $\overline{}$, we say that the set { \cdot , +, $\overline{}$ } is *functionally complete*.

CS 320

1 Dec 2015

wx				
6			[1]	
wx	1	1	1	
wx		1	1	
wx		~	1	

	yz	yz	<u>y</u> z	
wx			1	
wx	1	1	1	
wx		1	1	
WY			1	

Quine-McCluskey

- The idea is to make a table, with a row for each term in the original Boolean expression.
- We form a bit string for each term, e.g. 110 for $xy\overline{z}$, and arrange the rows by order of decreasing number of 1s.
- Then we combine terms differing in only one position (1 & 0), form another column, and repeat if possible.

CS 320

19

1 Dec 2015

Quine-McCluskey Once we have simplified expressions

- we make another table to see how many of these we need to actually cover the original terms.
- More than one simplification might do the job.
- See the book, pp 837-843, and the examples we'll do on the board.

CS 320

1 Dec 2015

20

See also http://en.wikipedia.org/wiki/Karnaugh http://en.wikipedia.org/wiki/Gray_code http://en.wikipedia.org/wiki/Quinegocluskey_algorithm