
1 Dec 2015

1

More Boolean Algebra

(from 12.2)
Definition: Because every Boolean

function can be represented using
the Boolean operators ⋅, +, and ̅ ,
we say that the set {⋅, + , ̅ } is
functionally complete.

1 Dec 2015 CS 320 1

Functionally complete

The set {⋅, ̅ } is functionally
complete since x + y തݕݔ̅ = .

The set {+, ̅ } is functionally
complete since xy ݔ̅ = . തݕ +

1 Dec 2015 CS 320 2

nand operator

The nand operator (not and), denoted
by |, is defined by 1|1 = 0, and 1|0 = 0|1 = 0|0 = 1. The set
consisting of just the one operator
nand {|} is functionally complete. Note that ̅ݔ = x | x and xy =
(x|y)|(x|y).

1 Dec 2015 CS 320 3

nor operator

The nor operator (not or), denoted by ↓, is defined by 0 ↓ 0 = 1, and 1 ↓ 0 = 0 ↓ 1 = 1 ↓ 1 = 0. The set
consisting of just the one operator
nor {↓} is functionally complete. (see Exercises 15 and 16)

1 Dec 2015 CS 320 4

1 Dec 2015 CS 320 5

Adding binary integers

If we add two one bit integers x and y we
get a sum for that bit position plus a
carry bit.

If we don’t consider a carry bit from a
lower bit addition we get what’s called a
half adder.

If we do consider an input carry bit we
have a full adder. (see p. 827, 6th ed.765)

1 Dec 2015 CS 320 6

Half Adder

Given input bits x and y, the result bit
will be x+y unless both x and y are
1, in which case the result is 0.

This means that we can express the
result bit as (x+y)(xy), or
(x+y)(x + y).

The carry bit will be xy (we carry if
both x and y are 1)

1 Dec 2015

2

1 Dec 2015 CS 320 7

Full Adder
If we add a carry bit c0 from the previous

order bit sum our result for this bit would
be 1 if one or three of c0, x, y are 1, and
0 otherwise.

This means
xyc0+xyc0+xyc0+xyc0 would work, with
carry bit
xyc0+xyc0+xyc0+xyc0

See p. 827 to check your implementation.

(from page 827)

1 Dec 2015 CS 320 8

1 Dec 2015 CS 320 9

Minimizing Circuits

A Boolean function can be
implemented by many different
Boolean expressions.

Disjunctive normal form, the sum-of-
products expansion we got from the
table of values of the expression, is
often not the most efficient.

1 Dec 2015 CS 320 10

Minimizing Circuits

For example, the Boolean expression
x1x2x3 + x1x2x3 + x1x3

= x1(x2+x2)x3 + x1x3

= x1x3 + x1x3 = (x1 + x1)x3 = x3

This last expression is a lot easier to
compute. No gates required. Much
simpler circuit.

1 Dec 2015 CS 320 11

Minimizing Circuits

Karnaugh Maps and the Quine-
McCluskey Method are used for
simplifying Boolean expressions.

See section 12.4.
We’ll do some examples on the

board.

1 Dec 2015 CS 320 12

Karnaugh Maps
yz yz yz yz

x 1 1
x 1 1

This Karnaugh map represents the Boolean
expression

xyz + xyz + xyz + xyz

The idea is to use the picture to help decide
which terms can be combined

1 Dec 2015

3

1 Dec 2015 CS 320 13

Karnaugh Maps

The idea is to combine cells which are
adjacent horizontally or vertically, since
they can be simplified.

The grouped cells can be described by a
simpler expression.

Cells on the right edge are adjacent to
cells on the left edge, and cells on the
top are adjacent to cells on the bottom.

1 Dec 2015 CS 320 14

Karnaugh Maps
yz yz yz yz

x 1 1
x 1 1

If we group the adjacent cells in the top and
bottom row we get the expression

xz + xy, which is simpler than

xyz + xyz + xyz + xyz

1 Dec 2015 CS 320 15

Karnaugh Maps, 4 variables
yz yz yz yz

wx 1
wx 1 1 1
wx 1 1
wx 1

Here the grouping shows we can express the
sum as yz + xz + wxy

1 Dec 2015 CS 320 16

Karnaugh Maps, 4 variables
yz yz yz yz

wx 1
wx 1 1 1
wx 1 1
wx 1

Nonoverlapping grouping would give
wxyz + xyz + yz, more complex than

yz + xz + wxy

1 Dec 2015 CS 320 17

Karnaugh Maps

See the book, page 836,
for a description of
“don’t care conditions”.
Sometimes some cells in a Karnaugh

map are irrelevant to our purpose
and we can include them or not,
which can allow a simpler result.

1 Dec 2015 CS 320 18

Quine-McCluskey Method

This method is a little trickier to
describe, but can be automated for
larger Boolean expressions, a real
advantage.

1 Dec 2015

4

1 Dec 2015 CS 320 19

Quine-McCluskey
The idea is to make a table, with a row for

each term in the original Boolean
expression.

We form a bit string for each term, e.g.
110 for xyz, and arrange the rows by
order of decreasing number of 1s.

Then we combine terms differing in only
one position (1 & 0), form another
column, and repeat if possible.

1 Dec 2015 CS 320 20

Quine-McCluskey

Once we have simplified expressions
we make another table to see how
many of these we need to actually
cover the original terms.

More than one simplification might do
the job.

See the book, pp 837-843, and the
examples we’ll do on the board.

See also

http://en.wikipedia.org/wiki/Karnaugh

http://en.wikipedia.org/wiki/Gray_code

http://en.wikipedia.org/wiki/Quine-
McCluskey_algorithm

1 Dec 2015 CS 320 21

