
9/9/2015

1

10 Sept 2015 CS 320 1

Proving Theorems

Direct proof:

An implication p→q can be proved by showing that if

p is true, then q is also true.

Example: Give a direct proof of the theorem

“If n is odd, then n2 is odd.”

Idea: Assume that the hypothesis of this implication

is true (n is odd). Then use rules of inference and

known theorems to show that q must also be true (n2

is odd).

10 Sept 2015 CS 320 2

Proving Theorems

n is odd.

Then n = 2k + 1, where k is an integer.

Consequently, n2 = (2k + 1)2.

= 4k2 + 4k + 1

= 2(2k2 + 2k) + 1

Since n2 can be written in this form, it is odd.

10 Sept 2015 CS 320 3

Proving Theorems

Indirect proof:

An implication p→q is equivalent to its contra-

positive ¬q → ¬p. Therefore, we can prove p→q by

showing that whenever q is false, then p is also false.

Example: Give an indirect proof of the theorem

“If 3n + 2 is odd, then n is odd.”

Idea: Assume that the conclusion of this implication

is false (n is even). Then use rules of inference and

known theorems to show that p must also be false

(3n + 2 is even).

10 Sept 2015 CS 320 4

Proving Theorems

Prove: If 3n + 2 is odd, then n is odd.

Suppose n is even.
Then n = 2k, where k is an integer.

It follows that 3n + 2 = 3(2k) + 2
= 6k + 2
= 2(3k + 1)

Therefore, 3n + 2 is even.

We have shown that the contrapositive of the
implication is true, so the implication itself is also true

10 Sept 2015 CS 320 5

… and now for something

completely different…

Set Theory
(sections 2.1, 2.2)

Actually, you will see that logic and

set theory are very closely related.

10 Sept 2015 CS 320 6

Set Theory

Set: Collection of objects (“elements”)

a∈A “a is an element of A”

“a is a member of A”

a∉A “a is not an element of A”

A = {a1, a2, …, an} “A consists of a1,…”

Order of elements is meaningless

It does not matter how often the same element is

listed.

9/9/2015

2

10 Sept 2015 CS 320 7

Set Equality

Sets A and B are equal if and only if they contain

exactly the same elements.

Examples:

• A = {9, 2, 7, -3}, B = {7, 9, -3, 2} : A = B

• A = {dog, cat, horse},

B = {cat, horse, squirrel, dog} : A ≠ B

• A = {dog, cat, horse},

B = {cat, horse, dog, dog} : A = B

10 Sept 2015 CS 320 8

Examples for Sets

“Standard” Sets:

Natural numbers N = {0, 1, 2, 3, …}

Integers Z = {…, -2, -1, 0, 1, 2, …}

Positive Integers Z+ = {1, 2, 3, 4, …}

Real Numbers R = {47.3, -12, π, …}

The description on the right is very misleading,

since we can’t actually list all elements of R in a

sequence.

Rational Numbers Q = {1.5, 2.6, -3.8, 15, …}

(correct definition will follow)

10 Sept 2015 CS 320 9

Examples for Sets

A = ∅ “empty set/null set”

A = {z} Note: z∈A, but z ≠ {z}

A = {{b, c}, {c, x, d}}

A = {{x, y}}

Note: {x, y} ∈A, but {x, y} ≠ {{x, y}}

A = {x | P(x)}
“set of all x such that P(x)”

A = {x | x∈N ∧ x > 7} = {8, 9, 10, …}

“set builder notation”

10 Sept 2015 CS 320 10

Examples for Sets
We are now able to define the set of rational numbers Q:

Q = {a/b | a∈Z ∧ b∈Z+} .

(We actually need equivalence classes of such

pairs (a,b))

or Q = {a/b | a∈Z ∧ b∈Z ∧ b≠0}

And how about the set of real numbers R?

R = {r | r is a real number}
That is the best we can do without getting much more

sophisticated. A real variables book such as “Principles of

Mathematical Analysis” by Walter Rudin will have the

details, but that isn’t discrete math.

10 Sept 2015 CS 320 11

Subsets

A ⊆ B “A is a subset of B”

A ⊆ B if and only if every element of A is also
an element of B.

Some people use A ⊂ B to mean “A is a subset of B”.

We can completely formalize this:

A ⊆ B ⇔ ∀x (x∈A → x∈B)
Examples:

A = {3, 9}, B = {5, 9, 1, 3}, A ⊆ B ? true

A = {3, 3, 3, 9}, B = {5, 9, 1, 3}, A ⊆ B ?

false

true

A = {1, 2, 3}, B = {2, 3, 4}, A ⊆ B ?

10 Sept 2015 CS 320 12

Subsets
Useful rules:

A = B ⇔ (A ⊆ B) ∧ (B ⊆ A)

(A ⊆ B) ∧ (B ⊆ C) ⇒ A ⊆ C (see Venn Diagram)

U

A
B

C

9/9/2015

3

10 Sept 2015 CS 320 13

Subsets

Useful rules:

∅ ⊆ A for any set A

A ⊆ A for any set A

Proper subsets:

A ⊂ B “A is a proper subset of B”

A ⊂ B ⇔ ∀x (x∈A → x∈B) ∧ ∃x (x∈B ∧ x∉A)

or

A ⊂ B ⇔ ∀x (x∈A → x∈B) ∧ ¬∀x (x∈B → x∈A)

10 Sept 2015 CS 320 14

Cardinality of Sets

If a set S contains exactly n distinct elements, n∈N,
we call S a finite set with cardinality n. |S| = n.

Examples:

A = {Mercedes, BMW, Porsche}, |A| = 3

B = {1, {2, 3}, {4, 5}, 6} |B| = 4

C = ∅ |C| = 0

D = { x∈N | x ≤ 7000 } |D| = 7001

E = { x∈N | x ≥ 7000 } E is infinite!

10 Sept 2015 CS 320 15

The Power Set

2A or P(A) “power set of A”

2A = {B | B ⊆ A} (consists of all subsets of A)

Examples:

A = {x, y, z}

2A = {∅, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}

A = ∅

2A = {∅}

Note: |A| = 0, |2A| = 1

10 Sept 2015 CS 320 16

The Power Set

Cardinality of power sets:

| 2A | = 2|A|

Imagine each element in A has an “on/off” switch

Each possible switch configuration in A corresponds to one

element in 2A , namely the set of all elements that are “on”.

A 1 2 3 4 5 6 7 8

x x x x x x x x x

y y y y y y y y y

z z z z z z z z z

• For 3 elements in A, there are

2×2×2 = 8 elements in 2A , that is, 8 subsets of A.

10 Sept 2015 CS 320 17

Cartesian Product

The ordered n-tuple (a1, a2, a3, …, an) is an ordered

collection of objects.

Two ordered n-tuples (a1, a2, a3, …, an) and

(b1, b2, b3, …, bn) are equal if and only if they

contain exactly the same elements in the same

order, i.e. ai = bi for 1 ≤ i ≤ n.

The Cartesian product of two sets is defined as:

A×B = {(a, b) | a∈A ∧ b∈B}

Example: A = {x, y}, B = {a, b, c}

A×B = {(x, a), (x, b), (x, c), (y, a), (y, b), (y, c)}

10 Sept 2015 CS 320 18

Cartesian Product

Note that:

A×∅ = ∅

∅×A = ∅

For non-empty sets A and B: A≠B ⇔ A×B ≠ B×A

|A×B| = |A|⋅|B|

The Cartesian product of two or more sets is

defined as:

A1×A2×…×An = {(a1, a2, …, an) | ai∈Ai for 1 ≤ i ≤ n}

9/9/2015

4

10 Sept 2015 CS 320 19

Set Operations

Union: A∪B = {x | x∈A ∨ x∈B}

Example: A = {a, b}, B = {b, c, d}

A∪B = {a, b, c, d}

Intersection: A∩B = {x | x∈A ∧ x∈B}

Example: A = {a, b}, B = {b, c, d}

A∩B = {b}

10 Sept 2015 CS 320 20

Arbitrary unions and intersections

If S is some index set, finite or infinite, we

define

U(i ∈ S) Ai = { x | x ∈Aj for some j ∈ S}

and

∩(i ∈ S) Ai = { x | x ∈Aj for all j ∈ S}.

Ui = 1
∞ Ai = A1 U A2 U A3 U A4 U …

∩i = 1
∞ Ai = A1 ∩ A2 ∩ A3 ∩ A4 ∩ …

are special cases

10 Sept 2015 CS 320 21

Set Operations

Two sets are called disjoint if their intersection is

empty, that is, they share no elements:

A∩B = ∅

The difference between two sets A and B contains

exactly those elements of A that are not in B:

A-B = {x | x∈A ∧ x∉B}

Example: A = {a, b}, B = {b, c, d}, A-B = {a}

10 Sept 2015 CS 320 22

Set Operations

The complement of a set A contains exactly those

elements in the universe of discourse that are not

in A:

-A = U-A

Example: U = N, B = {250, 251, 252, …}

-B = {0, 1, 2, …, 248, 249}

10 Sept 2015 CS 320 23

Set Operations
Table 1 in Section 2.2 (page 130) shows many useful
set identities.

How can we prove A∪(B∩C) = (A∪B)∩(A∪C)?

Method I:

x∈A∪(B∩C)

x∈A ∨ x∈(B∩C)

x∈A ∨ (x∈B ∧ x∈C)

(x∈A ∨ x∈B) ∧ (x∈A ∨ x∈C)
(distributive law for logical expressions)

x∈(A∪B) ∧ x∈(A∪C)

x∈(A∪B)∩(A∪C)

10 Sept 2015 CS 320 24

Set Operations

Method II: Membership table

1 means “x is an element of this set”

0 means “x is not an element of this set”

A B C B∩C A∪(B∩C) A∪B A∪C (A∪B) ∩(A∪C)

0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0

0 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1

1 0 1 0 1 1 1 1

1 1 0 0 1 1 1 1

1 1 1 1 1 1 1 1

9/9/2015

5

10 Sept 2015 CS 320 25

Set Operations

Roughly speaking, every logical expression can be

transformed into an equivalent expression in set

theory and vice versa.

10 Sept 2015 CS 320 26

Exercises

Question 1:

Given a set A = {x, y, z} and a set B = {1, 2, 3, 4},

what is the value of | 2A × 2B | ?

Question 2:

Is it true for all sets A and B that (A×B)∩(B×A) = ∅ ?

Or do A and B have to meet certain conditions?

Question 3:

For any two sets A and B, if A – B = ∅ and B – A = ∅,

can we conclude that A = B? Why or why not?

10 Sept 2015 27

Functions
(section 2.3)

10 Sept 2015 28

Functions

A function f from a set A to a set B is an assignment

of exactly one element of B to each element of A.

We write

f(a) = b

if b is the unique element of B assigned by the

function f to the element a of A.

If f is a function from A to B, we write

f: A→B and say “f maps A to B”

(note: Here, “→“ has nothing to do with if… then)

10 Sept 2015 29

Functions

If f:A→B, we say that A is the domain of f and B is

the codomain of f.

If f(a) = b, we say that b is the image of a and a is the

pre-image of b.

The range of f:A→B is the set of all images of

elements of A.

We say that f:A→B maps A to B.

10 Sept 2015 30

Functions

Let us take a look at the function f:P→C with

P = {Linda, Max, Kathy, Peter}

C = {Boston, New York, Hong Kong, Moscow}

f(Linda) = Moscow

f(Max) = Boston

f(Kathy) = Hong Kong

f(Peter) = New York

Here, the range of f is C.

9/9/2015

6

10 Sept 2015 31

Functions

Let us re-specify f as follows:

f(Linda) = Moscow

f(Max) = Boston

f(Kathy) = Hong Kong

f(Peter) = Boston

Is f still a function? yes

{Moscow, Boston, Hong Kong}What is its range?

10 Sept 2015 32

Functions

Other ways to represent f:

x f(x)

Linda Moscow

Max Boston

Kathy
Hong

Kong

Peter Boston

Linda

Max

Kathy

Peter

Boston

New York

Hong Kong

Moscow

10 Sept 2015 33

Functions

If the domain of our function f is large, it is
convenient to specify f with a formula, e.g.:

f:R→R

f(x) = 2x

This leads to:

f(1) = 2

f(3) = 6

f(-3) = -6

…

10 Sept 2015 34

Functions

Let f1 and f2 be functions from A to R.

Then the sum and the product of f1 and f2 are
also functions from A to R defined by:

(f1 + f2)(x) = f1(x) + f2(x)

(f1f2)(x) = f1(x) f2(x)

Example:

f1(x) = 3x, f2(x) = x + 5

(f1 + f2)(x) = f1(x) + f2(x) = 3x + x + 5 = 4x + 5

(f1f2)(x) = f1(x) f2(x) = 3x (x + 5) = 3x2 + 15x

10 Sept 2015 35

Functions

We already know that the range of a function f:A→B

is the set of all images of elements a∈A.

If we only consider a subset S⊆A, the set of all

images of elements s∈S is called the image of S

under f.

We denote the image of S by f(S):

f(S) = {f(s) | s∈S}

10 Sept 2015 36

Functions

Let us look at the following well-known function:

f(Linda) = Moscow

f(Max) = Boston

f(Kathy) = Hong Kong

f(Peter) = Boston

What is the image of S = {Linda, Max} ?

f(S) = {Moscow, Boston}

What is the image of S = {Max, Peter} ?

f(S) = {Boston}

9/9/2015

7

10 Sept 2015 37

Properties of Functions

A function f:A→B is said to be one-to-one (or

injective), if and only if

∀x, y∈A (f(x) = f(y) → x = y)

In other words: f is one-to-one (injective) if and only

if it does not map two distinct elements of A onto the

same element of B.

10 Sept 2015 38

Properties of Functions

And again…

f(Linda) = Moscow

f(Max) = Boston

f(Kathy) = Hong Kong

f(Peter) = Boston

Is f one-to-one?

No, Max and Peter are

mapped onto the same

element of the image.

g(Linda) = Moscow

g(Max) = Boston

g(Kathy) = Hong Kong

g(Peter) = New York

Is g one-to-one?

Yes, each element is assigned a

unique element of the image.

10 Sept 2015 39

Properties of Functions

How can we prove that a function f is one-to-one?

Whenever you want to prove something, first take a

look at the relevant definition(s):

∀x, y∈A (f(x) = f(y) → x = y)

Example:

f:R→R

f(x) = x2

Disproof by counterexample:

f(3) = f(-3), but 3 ≠ -3, so f is not one-to-one.

10 Sept 2015 40

Properties of Functions

… and yet another example:

f:R→R

f(x) = 3x

One-to-one: ∀x, y∈A (f(x) = f(y) → x = y)

To show: f(x) ≠ f(y) whenever x ≠ y

x ≠ y

⇔ 3x ≠ 3y

⇔ f(x) ≠ f(y),

so if x ≠ y, then f(x) ≠ f(y), that is, f is one-to-one.

10 Sept 2015 41

The Growth of Functions: Big O

The growth of functions is usually described (for
upper bounds) by using the big-O notation.

Definition: Let f and g be functions from the
integers or the real numbers to the real numbers.
We say that f(x) is O(g(x)) if there are constants C
and k such that

|f(x)| ≤ C|g(x)| for all x > k.

(f is bounded above by g, up to a constant multiple. f grows no faster than
g)

10 Sept 2015 42

The Growth of Functions: Ω

The growth of functions is bounded below using the
Ω (capital Omega) notation.

Definition: Let f and g be functions from the
integers or the real numbers to the real numbers.
We say that f(x) is Ω(g(x)) if there are positive
constants C and k such that

|f(x)| ≥ C|g(x)| for all x > k.

(f is bounded below by g, up to a constant multiple. f grows at least as
fast as g)

9/9/2015

8

10 Sept 2015 43

The Growth of Functions: Θ

The growth of functions is also described using the
Θ (capital Theta) notation.

Definition: Let f and g be functions from the
integers or the real numbers to the real numbers.
We say that f(x) is Θ(g(x)) if there are positive
constants C1, C2, and k such that

C1|g(x)| ≤ |f(x)| ≤ C2|g(x)| for all x > k.

(f is bounded above and below by constant
multiples of g: f grows at the same rate as g)

10 Sept 2015 44

The Growth of Functions

When we analyze the growth of functions we

generally consider f(x) and g(x) which are always

positive.

In that case we can simplify the big-O requirement to

f(x) ≤ C⋅g(x) whenever x > k.

If we want to show that f(x) is O(g(x)), we only need

to find one pair (C, k) (which is never unique).

10 Sept 2015 45

The Growth of Functions

The idea behind the big-O notation is to establish an

upper bound for the growth of a function f(x) for

large x.

This bound is specified by a function g(x) that is

usually much simpler than f(x).

We accept the constant C in the requirement

f(x) ≤ C⋅g(x) whenever x > k,

because C does not grow with x.

We are only interested in large x, so it is OK if

f(x) > C⋅g(x) for x ≤ k.

10 Sept 2015 46

The Growth of Functions

Example:

Show that f(x) = x2 + 2x + 1 is O(x2).

For x > 1 we have:

x2 + 2x + 1 ≤ x2 + 2x2 + x2

⇒ x2 + 2x + 1 ≤ 4x2

Therefore, for C = 4 and k = 1:

f(x) ≤ Cx2 whenever x > k.

⇒ f(x) is O(x2).

10 Sept 2015 47

The Growth of Functions

Question: If f(x) is O(x2), is it also O(x3)?

Yes. x3 grows faster than x2, so x3 grows also faster

than f(x).

Therefore, we always want to find the smallest

simple function g(x) for which f(x) is O(g(x)).

10 Sept 2015 48

The Growth of Functions

“Popular” functions g(n) are
n log n, 1, 2n, n2, n!, n, n3, log n

Listed from slowest to fastest growth:

• 1
• log n
• n
• n log n
• n2

• n3

• 2n

• n!

9/9/2015

9

10 Sept 2015 49

The Growth of Functions

A problem that can be solved with polynomial worst-

case complexity is called tractable.

Problems of higher complexity are called intractable.

Problems that no algorithm can solve are called

unsolvable.

You will find out more about this in CS420.

10 Sept 2015 50

Useful Rules for Big-O

For any polynomial f(x) = anx
n + an-1x

n-1 + … + a0,
where a0, a1, …, an are real numbers,
f(x) is O(xn).

If f1(x) is O(g1(x)) and f2(x) is O(g2(x)), then

(f1 + f2)(x) is O(max(g1(x), g2(x)))

If f1(x) is O(g(x)) and f2(x) is O(g(x)), then

(f1 + f2)(x) is O(g(x)).

If f1(x) is O(g1(x)) and f2(x) is O(g2(x)), then

(f1f2)(x) is O(g1(x) g2(x)).

10 Sept 2015 51

Complexity Examples

What does the following algorithm compute?

procedure who_knows(a1, a2, …, an: integers)
m := 0
for i := 1 to n-1

for j := i + 1 to n
if |ai – aj| > m then m := |ai – aj|

{m is the maximum difference between any two
numbers in the input sequence}

Comparisons: n-1 + n-2 + n-3 + … + 1

= (n – 1)n/2 = 0.5n2 – 0.5n

Time complexity is O(n2).

10 Sept 2015 52

Complexity Examples

Another algorithm solving the same problem:

procedure max_diff(a1, a2, …, an: integers)

min := a1

max := a1

for i := 2 to n

if ai < min then min := ai

else if ai > max then max := ai

m := max - min

Comparisons: no more than 2n - 2

Time complexity is O(n).

