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Proving Theorems

Direct proof:

An implication p→q can be proved by showing that if 

p is true, then q is also true.

Example: Give a direct proof of the theorem 

“If n is odd, then n2 is odd.”

Idea: Assume that the hypothesis of this implication 

is true (n is odd). Then use rules of inference and 

known theorems to show that q must also be true (n2

is odd).
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Proving Theorems

n is odd.

Then n = 2k + 1, where k is an integer.

Consequently, n2 = (2k + 1)2.

= 4k2 + 4k + 1

= 2(2k2 + 2k) + 1

Since n2 can be written in this form, it is odd.
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Proving Theorems

Indirect proof:

An implication p→q is equivalent to its contra-

positive ¬q → ¬p. Therefore, we can prove p→q by 

showing that whenever q is false, then p is also false.

Example: Give an indirect proof of the theorem 

“If 3n + 2 is odd, then n is odd.”

Idea: Assume that the conclusion of this implication 

is false (n is even). Then use rules of inference and 

known theorems to show that p must also be false 

(3n + 2 is even).
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Proving Theorems

Prove: If 3n + 2 is odd, then n is odd.

Suppose n is even.
Then n = 2k, where k is an integer.

It follows that 3n + 2 = 3(2k) + 2 
= 6k + 2
= 2(3k + 1)

Therefore, 3n + 2 is even.

We have shown that the contrapositive of the 
implication is true, so the implication itself is also true
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… and now for something 

completely different…

Set Theory
(sections 2.1, 2.2)

Actually, you will see that logic and 

set theory are very closely related.
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Set Theory

Set: Collection of objects (“elements”)

a∈A “a is an element of A”

“a is a member of A”

a∉A “a is not an element of A”

A = {a1, a2, …, an}   “A consists of a1,…”

Order of elements is meaningless

It does not matter how often the same element is 

listed.
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Set Equality

Sets A and B are equal if and only if they contain 

exactly the same elements.

Examples:

• A = {9, 2, 7, -3}, B = {7, 9, -3, 2} : A = B

• A = {dog, cat, horse}, 

B = {cat, horse, squirrel, dog} : A ≠ B

• A = {dog, cat, horse}, 

B = {cat, horse, dog, dog} : A = B
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Examples for Sets

“Standard” Sets:

Natural numbers N = {0, 1, 2, 3, …}

Integers Z = {…, -2, -1, 0, 1, 2, …} 

Positive Integers Z+ = {1, 2, 3, 4, …}

Real Numbers R = {47.3, -12, π, …}

The description on the right is very misleading, 

since we can’t actually list all elements of R in a 

sequence.

Rational Numbers Q = {1.5, 2.6, -3.8, 15, …}

(correct definition will follow)
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Examples for Sets

A = ∅ “empty set/null set”  

A = {z} Note: z∈A, but z ≠ {z}

A = {{b, c}, {c, x, d}}

A = {{x, y}} 

Note: {x, y} ∈A, but {x, y} ≠ {{x, y}}

A = {x | P(x)}
“set of all x such that P(x)”

A = {x | x∈N ∧ x > 7} = {8, 9, 10, …}

“set builder notation”
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Examples for Sets
We are now able to define the set of rational numbers Q:

Q = {a/b | a∈Z ∧ b∈Z+} . 

(We actually need equivalence classes of such 

pairs (a,b))

or Q = {a/b | a∈Z ∧ b∈Z ∧ b≠0} 

And how about the set of real numbers R?

R = {r | r is a real number}
That is the best we can do without getting much more 

sophisticated.  A real variables book such as “Principles of 

Mathematical Analysis” by Walter Rudin will have the 

details, but that isn’t discrete math.
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Subsets

A ⊆ B “A is a subset of B”

A ⊆ B if and only if every element of A is also  
an element of B.

Some people use A ⊂ B to mean “A is a subset of B”.

We can completely formalize this:

A ⊆ B ⇔ ∀x (x∈A → x∈B)
Examples:

A = {3, 9},  B = {5, 9, 1, 3},           A ⊆ B ? true

A = {3, 3, 3, 9},  B = {5, 9, 1, 3},   A ⊆ B ?

false

true

A = {1, 2, 3}, B = {2, 3, 4},           A ⊆ B ?
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Subsets
Useful rules:

A = B ⇔ (A ⊆ B) ∧ (B ⊆ A) 

(A ⊆ B) ∧ (B ⊆ C) ⇒ A ⊆ C   (see Venn Diagram)

U

A
B

C
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Subsets

Useful rules:

∅ ⊆ A for any set A 

A ⊆ A for any set A

Proper subsets:

A ⊂ B     “A is a proper subset of B”

A ⊂ B ⇔ ∀x (x∈A → x∈B) ∧ ∃x (x∈B ∧ x∉A)

or

A ⊂ B ⇔ ∀x (x∈A → x∈B) ∧ ¬∀x (x∈B → x∈A) 
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Cardinality of Sets

If a set S contains exactly n distinct elements, n∈N,
we call S a finite set with cardinality n.  |S| = n.

Examples:

A = {Mercedes, BMW, Porsche},    |A| = 3

B = {1, {2, 3}, {4, 5}, 6} |B| = 4

C = ∅ |C| = 0

D = { x∈N | x ≤ 7000 } |D| = 7001

E = { x∈N | x ≥ 7000 } E is infinite!
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The Power Set

2A or P(A)           “power set of A”

2A = {B | B ⊆ A}     (consists of all subsets of A)

Examples:

A = {x, y, z}

2A = {∅, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}

A = ∅

2A = {∅}

Note: |A| = 0,  |2A| = 1 
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The Power Set

Cardinality of power sets:

| 2A | = 2|A|

Imagine each element in A has an “on/off” switch

Each possible switch configuration in A corresponds to one 

element in 2A , namely the set of all elements that are “on”.

A 1 2 3 4 5 6 7 8

x x x x x x x x x

y y y y y y y y y

z z z z z z z z z

• For 3 elements in A, there are 

2×2×2 = 8 elements in 2A , that is, 8 subsets of A.
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Cartesian Product

The ordered n-tuple (a1, a2, a3, …, an) is an ordered 

collection of objects.

Two ordered n-tuples (a1, a2, a3, …, an) and 

(b1, b2, b3, …, bn) are equal if and only if they 

contain exactly the same elements in the same 

order, i.e. ai = bi for 1 ≤ i ≤ n.

The Cartesian product of two sets is defined as:

A×B = {(a, b) | a∈A ∧ b∈B}

Example: A = {x, y}, B = {a, b, c}

A×B = {(x, a), (x, b), (x, c), (y, a), (y, b), (y, c)}
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Cartesian Product

Note that:

A×∅ = ∅

∅×A = ∅

For non-empty sets A and B: A≠B ⇔ A×B ≠ B×A

|A×B| = |A|⋅|B|

The Cartesian product of two or more sets is 

defined as:

A1×A2×…×An = {(a1, a2, …, an) | ai∈Ai for 1 ≤ i ≤ n}
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Set Operations

Union: A∪B = {x | x∈A ∨ x∈B}

Example: A = {a, b}, B = {b, c, d}

A∪B = {a, b, c, d} 

Intersection: A∩B = {x | x∈A ∧ x∈B}

Example: A = {a, b}, B = {b, c, d}

A∩B = {b}
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Arbitrary unions and intersections

If S is some index set, finite or infinite,  we 

define

U(i ∈ S) Ai = { x | x ∈Aj for some j ∈ S}

and

∩(i ∈ S) Ai = { x | x ∈Aj for all j ∈ S}.

Ui = 1
∞ Ai = A1 U A2 U A3 U A4 U …

∩i = 1
∞ Ai = A1 ∩ A2 ∩ A3 ∩ A4 ∩ …

are special cases
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Set Operations

Two sets are called disjoint if their intersection is 

empty, that is, they share no elements:

A∩B = ∅

The difference between two sets A and B contains 

exactly those elements of A that are not in B:

A-B = {x | x∈A ∧ x∉B}

Example: A = {a, b}, B = {b, c, d}, A-B = {a}
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Set Operations

The complement of a set A contains exactly those 

elements in the universe of discourse that are not 

in A: 

-A = U-A

Example: U = N,  B = {250, 251, 252, …}

-B = {0, 1, 2, …, 248, 249}
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Set Operations
Table 1 in Section 2.2 (page 130) shows many useful 
set identities. 

How can we prove A∪(B∩C) = (A∪B)∩(A∪C)?

Method I:

x∈A∪(B∩C)

x∈A ∨ x∈(B∩C)

x∈A ∨ (x∈B ∧ x∈C)

(x∈A ∨ x∈B) ∧ (x∈A ∨ x∈C)
(distributive law for logical expressions)

x∈(A∪B) ∧ x∈(A∪C)

x∈(A∪B)∩(A∪C)
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Set Operations

Method II: Membership table

1 means “x is an element of this set”

0 means “x is not an element of this set” 

A   B   C B∩C A∪(B∩C) A∪B A∪C (A∪B) ∩(A∪C)

0   0   0 0 0 0 0 0

0   0   1 0 0 0 1 0

0   1   0 0 0 1 0 0

0   1   1 1 1 1 1 1

1   0   0 0 1 1 1 1

1   0   1 0 1 1 1 1

1   1   0 0 1 1 1 1

1   1   1 1 1 1 1 1
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Set Operations

Roughly speaking, every logical expression can be 

transformed into an equivalent expression in set 

theory and vice versa.
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Exercises

Question 1:

Given a set A = {x, y, z} and a set B = {1, 2, 3, 4}, 

what is the value of  | 2A × 2B | ?

Question 2:

Is it true for all sets A and B that (A×B)∩(B×A) = ∅ ?

Or do A and B have to meet certain conditions?

Question 3:

For any two sets A and B, if A – B = ∅ and B – A = ∅, 

can we conclude that A = B? Why or why not?
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Functions
(section 2.3)
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Functions

A function f from a set A to a set B is an assignment 

of exactly one element of B to each element of A.

We write

f(a) = b

if b is the unique element of B assigned by the 

function f to the element a of A.

If f is a function from A to B, we write

f: A→B and say “f maps A to B”

(note:  Here, “→“ has nothing to do with if… then)
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Functions

If f:A→B, we say that A is the domain of f and B is 

the codomain of f. 

If f(a) = b, we say that b is the image of a and a is the 

pre-image of b.

The range of f:A→B is the set of all images of 

elements of A.

We say that f:A→B maps A to B.
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Functions

Let us take a look at the function f:P→C with

P = {Linda, Max, Kathy, Peter}

C = {Boston, New York, Hong Kong, Moscow}

f(Linda) = Moscow

f(Max) = Boston

f(Kathy) = Hong Kong

f(Peter) = New York

Here, the range of f is C.
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Functions

Let us re-specify f as follows:

f(Linda) = Moscow

f(Max) = Boston

f(Kathy) = Hong Kong

f(Peter) = Boston

Is f still a function? yes

{Moscow, Boston, Hong Kong}What is its range?
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Functions

Other ways to represent f:

x f(x)

Linda Moscow

Max Boston

Kathy
Hong 

Kong

Peter Boston

Linda

Max

Kathy

Peter

Boston

New York

Hong Kong

Moscow
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Functions

If the domain of our function f is large, it is 
convenient to specify f with a formula, e.g.:

f:R→R

f(x) = 2x

This leads to:

f(1) = 2

f(3) = 6

f(-3) = -6

…
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Functions

Let f1 and f2 be functions from A to R.

Then the sum and the product of f1 and f2 are 
also functions from A to R defined by:

(f1 + f2)(x) =  f1(x) + f2(x)

(f1f2)(x) =  f1(x) f2(x)

Example:

f1(x) = 3x,  f2(x) = x + 5

(f1 + f2)(x) =  f1(x) + f2(x) = 3x + x + 5 = 4x + 5

(f1f2)(x) =  f1(x) f2(x) = 3x (x + 5) = 3x2 + 15x
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Functions

We already know that the range of a function f:A→B 

is the set of all images of elements a∈A.

If we only consider a subset S⊆A, the set of all 

images of elements s∈S is called the image of S 

under f.

We denote the image of S by f(S):

f(S) = {f(s) | s∈S}
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Functions

Let us look at the following well-known function:

f(Linda) = Moscow

f(Max) = Boston

f(Kathy) = Hong Kong

f(Peter) = Boston

What is the image of S = {Linda, Max} ?

f(S) = {Moscow, Boston}

What is the image of S = {Max, Peter} ?

f(S) = {Boston}
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Properties of Functions

A function f:A→B is said to be one-to-one (or 

injective), if and only if

∀x, y∈A (f(x) = f(y) → x = y)

In other words: f is one-to-one (injective) if and only 

if it does not map two distinct elements of A onto the 

same element of B.
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Properties of Functions

And again…

f(Linda) = Moscow

f(Max) = Boston

f(Kathy) = Hong Kong

f(Peter) = Boston

Is f one-to-one?

No, Max and Peter are 

mapped onto the same 

element of the image.

g(Linda) = Moscow

g(Max) = Boston

g(Kathy) = Hong Kong

g(Peter) = New York

Is g one-to-one?

Yes, each element is assigned a 

unique element of the image.
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Properties of Functions

How can we prove that a function f is one-to-one?

Whenever you want to prove something, first take a 

look at the relevant definition(s):

∀x, y∈A (f(x) = f(y) → x = y)

Example:

f:R→R

f(x) = x2

Disproof by counterexample:

f(3) = f(-3), but 3 ≠ -3, so f is not one-to-one.
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Properties of Functions

… and yet another example:

f:R→R

f(x) = 3x

One-to-one: ∀x, y∈A (f(x) = f(y) → x = y)

To show: f(x) ≠ f(y) whenever x ≠ y

x ≠ y

⇔ 3x ≠ 3y

⇔ f(x) ≠ f(y), 

so if x ≠ y, then f(x) ≠ f(y), that is, f is one-to-one.
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The Growth of Functions: Big O

The growth of functions is usually described (for 
upper bounds) by using the big-O notation.

Definition: Let f and g be functions from the 
integers or the real numbers to the real numbers.
We say that f(x) is O(g(x)) if there are constants C 
and k such that

|f(x)| ≤ C|g(x)| for all x > k.

(f is bounded above by g, up to a constant multiple. f grows no faster than 
g)
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The Growth of Functions: Ω

The growth of functions is bounded below using the 
Ω (capital Omega) notation.

Definition: Let f and g be functions from the 
integers or the real numbers to the real numbers.
We say that f(x) is Ω(g(x)) if there are positive 
constants C and k such that

|f(x)| ≥ C|g(x)|   for all x > k.

(f is bounded below by g, up to a constant multiple.  f grows at least as 
fast as g)
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The Growth of Functions: Θ

The growth of functions is also described using the 
Θ (capital Theta) notation.

Definition: Let f and g be functions from the 
integers or the real numbers to the real numbers.
We say that f(x) is Θ(g(x)) if there are positive 
constants C1, C2,  and k such that

C1|g(x)| ≤ |f(x)| ≤ C2|g(x)| for all x > k.

(f is bounded above and below by constant 
multiples of g:  f grows at the same rate as g)
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The Growth of Functions

When we analyze the growth of functions we 

generally consider f(x) and g(x) which are always 

positive. 

In that case we can simplify the big-O requirement to

f(x) ≤ C⋅g(x)  whenever x > k.

If we want to show that f(x) is O(g(x)), we only need 

to find one pair (C, k) (which is never unique).
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The Growth of Functions

The idea behind the big-O notation is to establish an 

upper bound for the growth of a function f(x) for 

large x.

This bound is specified by a function g(x) that is 

usually much simpler than f(x).

We accept the constant C in the requirement

f(x) ≤ C⋅g(x)  whenever x > k,

because C does not grow with x.

We are only interested in large x, so it is OK if

f(x) > C⋅g(x)  for x ≤ k.
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The Growth of Functions

Example:

Show that f(x) = x2 + 2x + 1 is O(x2).

For x > 1 we have:

x2 + 2x + 1 ≤ x2 + 2x2 + x2

⇒ x2 + 2x + 1 ≤ 4x2

Therefore, for C = 4 and k = 1:

f(x) ≤ Cx2 whenever x > k.

⇒ f(x) is O(x2).
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The Growth of Functions

Question: If f(x) is O(x2), is it also O(x3)?

Yes. x3 grows faster than x2, so x3 grows also faster 

than f(x).

Therefore, we always want to find the smallest

simple function g(x) for which f(x) is O(g(x)). 
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The Growth of Functions

“Popular” functions g(n) are
n log n, 1, 2n, n2, n!, n, n3, log n

Listed from slowest to fastest growth:

• 1
• log n
• n
• n log n
• n2

• n3

• 2n

• n!
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The Growth of Functions

A problem that can be solved with polynomial worst-

case complexity is called tractable.

Problems of higher complexity are called intractable.

Problems that no algorithm can solve are called 

unsolvable.

You will find out more about this in CS420.
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Useful Rules for Big-O

For any polynomial f(x) = anx
n + an-1x

n-1 + … + a0, 
where a0, a1, …, an are real numbers,
f(x) is O(xn).

If f1(x) is O(g1(x)) and f2(x) is O(g2(x)), then 

(f1 + f2)(x) is O(max(g1(x), g2(x)))

If f1(x) is O(g(x)) and f2(x) is O(g(x)), then

(f1 + f2)(x) is O(g(x)).

If f1(x) is O(g1(x)) and f2(x) is O(g2(x)), then 

(f1f2)(x) is O(g1(x) g2(x)).
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Complexity Examples

What does the following algorithm compute?

procedure who_knows(a1, a2, …, an: integers)
m := 0
for i := 1 to n-1

for j := i + 1 to n
if |ai – aj| > m then m := |ai – aj|

{m is the maximum difference between any two 
numbers in the input sequence}

Comparisons: n-1 + n-2 + n-3 + … + 1

= (n – 1)n/2 = 0.5n2 – 0.5n

Time complexity is O(n2).
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Complexity Examples

Another algorithm solving the same problem:

procedure max_diff(a1, a2, …, an: integers)

min := a1

max := a1

for i := 2 to n

if ai < min then min := ai

else if ai > max then max := ai

m := max - min

Comparisons: no more than 2n - 2

Time complexity is O(n).


