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Functions continued
( still section 2.3)
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Properties of Functions

A function f:A→B with A,B ⊆ R is called strictly 

increasing, if 

∀x,y∈A (x < y → f(x) < f(y)),

and strictly decreasing, if

∀x,y∈A (x < y → f(x) > f(y)).

Obviously, a function that is either strictly increasing 

or strictly decreasing is one-to-one.
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Properties of Functions

A function f:A→B is called onto, or surjective, if and 

only if for every element b∈B there is an element a∈A

with f(a) = b.

In other words, f is onto if and only if its range is its 

entire codomain.

A function f: A→B is a one-to-one correspondence, or 

a bijection, if and only if it is both one-to-one and onto.

Obviously, if f is a bijection and A and B are finite sets, 

then |A| = |B|.
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Properties of Functions

Examples:

In the following examples, we use the arrow 

representation to illustrate functions f:A→B. 

In each example, the complete sets A and B are 

shown.
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Properties of Functions
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No.

Is f bijective?
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Properties of Functions

Is f injective?

No! f is not even

a function!
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Inversion

An interesting property of bijections is that they 

have an inverse function.

The inverse function of the bijection f:A→B is the 

function f-1:B→A with 

f-1(b) = a whenever f(a) = b. 
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Inversion
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Inversion

Example:

f(Linda) = Moscow

f(Max) = Boston

f(Kathy) = Hong Kong

f(Peter) = Lübeck

f(Helena) = New York

Clearly, f is bijective.

The inverse function  f-1

is given by:

f-1(Moscow) = Linda

f-1(Boston) = Max

f-1(Hong Kong) = Kathy

f-1(Lübeck) = Peter

f-1(New York) = Helena

Inversion is only 

possible for bijections

(= invertible functions)
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Composition

The composition of two functions g:A→B and  
f:B→C, denoted by  f°g, is defined by 

(f°g)(a) = f(g(a))

This means that 

• first, function g is applied to element a∈A,
mapping it onto an element of B,

• then, function f is applied to this element of 
B, mapping it onto an element of C.

• Therefore, the composite function maps 
from A to C.
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Composition

Example:

f(x) = 7x – 4, g(x) = 3x,

f:R→R, g:R→R

(f°g)(5) = f(g(5)) = f(15) = 105 – 4 = 101

(f°g)(x) = f(g(x)) = f(3x) = 21x - 4
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Composition

Composition of a function and its inverse:

(f-1°f)(x) = f-1(f(x)) = x

The composition of a function and its inverse is 

the identity function i(x) = x.
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Graphs

The graph of a function f:A→B is the set of 

ordered pairs {(a, b) | a∈A and f(a) = b}.

The graph is a subset of A×B that can be used to 

visualize f in a two-dimensional coordinate 

system.
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Floor and Ceiling Functions

The floor and ceiling (or roof) functions map the 

real numbers onto the integers (R→Z).

The floor function assigns to r∈R the largest z∈Z

with z≤r, denoted by r.

Examples: 2.3 = 2, 2 = 2, 0.5 = 0, -3.5 = -4

The ceiling function assigns to r∈R the smallest 

z∈Z with z≥r, denoted by r.

Examples: 2.3 = 3, 2 = 2, 0.5 = 1, -3.5 = -3 

Partial Functions

A partial function f from A to B 

is a function  

f:C→B 

where C is a subset of A.
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Exercises

I recommend Exercises 1, 5, and 17 in Section 2.3.

It may also be useful to study the graph displays in 

that section. 

Another question: What do all graph displays for 

any function f:R→R have in common?
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… and now for…

Sequences
(Section 2.4)
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Sequences

Sequences represent ordered lists of elements.

A sequence is defined as a function from a subset of 
N to a set S. We use the notation an to denote the 
image of the integer n. We call an a term of the 
sequence.

Example:

subset of N:           1   2   3   4    5   …

S:                          2    4   6    8   10  …
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Sequences

We use the notation {an} to describe a sequence.

Important: Do not confuse this with the {} used in set 

notation.

It is convenient to describe a sequence with a 

formula.

For example, the sequence on the previous slide 

can be specified as {an}, where an = 2n. 
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The Formula Game

1, 3, 5, 7, 9, … an = 2n - 1

-1, 1, -1, 1, -1, … an = (-1)n

2, 5, 10, 17, 26, … an = n2 + 1

0.25, 0.5, 0.75, 1, 1.25 … an = 0.25n

3, 9, 27, 81, 243, … an = 3n

What are the formulas that describe the 

following sequences a1, a2, a3, … ?
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Strings

A String can be thought of as a finite sequence of 

characters, denoted by a1a2a3…an.

The length of a string S is the number of terms that 

it consists of.

The empty string contains no terms at all. It has 

length zero.
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Summations

It represents the sum am + am+1 + am+2 + … + an.

The variable j is called the index of summation, 

running from its lower limit m to its upper limit n. 

We could as well have used any other letter to 

denote this index.

What does           stand for?
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Summations

It is 1 + 2 + 3 + 4 + 5 + 6 = 21.

We write it as           .

What is the value of            ?

It is so much work to calculate this…

What is the value of            ?

How can we express the sum of the first 1000 

terms of the sequence {an} with an=n2 for 

n = 1, 2, 3, … ?
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Summations

It is said that Friedrich Gauss came up with the 

following formula:

When you have such a formula, the result of any 

summation can be calculated much more easily, for 

example:
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Double Summations

Corresponding to nested loops in C or Java, 

there is also double (or triple etc.) summation:

Example:
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Double Summations

Table 2 in Section 2.4 contains some very useful 

formulas for calculating sums.

Exercises 31 and 33 are nice exercises, and there 

are many others as well.
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Cardinality (section 2.5)

A set S of n elements has 

cardinality n, |S| = n.

An set is countable if it is finite or is 

in 1-1 correspondence with the 

natural numbers.

A set that isn’t countable is 

uncountable
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Countable and Uncountable sets.

The set of Natural numbers is 

countable.

The set of integers is countable.

The set of rational numbers is 

countable.

The set of real numbers is 

uncountable.
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Countable Sets

Theorem.  A set S is countable iff its elements 

can be counted in a finite or infinite 

sequence. (S = {a1, a2, a3, …})

Theorem: Any subset of a countable set is 

countable.

Theorem. If A and B are countable then A∪B is 

countable.

Theorem: A countable union of countable sets 

is countable.
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Countability

Theorem (Cantor):  the set of real 

numbers is uncountable.

Proof:  Cantor’s diagonalization process 

shows that no sequence can list every 

point in the unit interval [0, 1]. 

See example 5, page 173, for this proof.
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Enough Mathematical Appetizers! 

Let us look at something more interesting for CS:

Algorithms
(sections 3.1, 3.2)
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Algorithms 

What is an algorithm?

An algorithm is a finite set of precise instructions for 

performing a computation or for solving a problem.

This is a rather vague definition. You will get to know 

a more precise and mathematically useful definition 

when you attend CS420 or CS620. 

But this one is good enough for now…
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Algorithms 

Properties of algorithms:

• Input from a specified set,

• Output to a specified set (solution),

• Definiteness of every step in the computation,

• Correctness of output for every possible input,

• Finiteness of the number of calculation steps,

• Effectiveness of each calculation step and

• Generality for a class of problems.
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Algorithm Examples

We will use a pseudocode to specify algorithms, 

which slightly reminds us of Basic and Pascal.

Example: an algorithm that finds the maximum 

element in a finite sequence

procedure max(a1, a2, …, an: integers)

max := a1

for i := 2 to n

if max < ai then max := ai

{max is the largest element}



7

15 Sept 2015 37

Algorithm Examples

Another example: a linear search algorithm, that is, 
an algorithm that linearly searches a sequence for a 
particular element.

procedure linear_search(x: integer; a1, a2, …, an: 
integers)

i := 1
while (i ≤ n and x ≠ ai)

i := i + 1
if i ≤ n then location := i
else location := 0
{location is the subscript of the first term that equals 
x, or is zero if x is not found}
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Algorithm Examples

If the terms in a sequence are ordered, a binary 

search algorithm is more efficient than linear search.

The binary search algorithm iteratively restricts the 

relevant search interval until it closes in on the 

position of the element to be located.
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Algorithm Examples

a  c  d  f  g  h  j  l  m  o  p  r  s  u  v  x  z

binary search for the letter ‘j’

center element

search interval
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Algorithm Examples
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Algorithm Examples

a  c  d  f  g h j  l  m o  p  r  s  u  v  x  z

binary search for the letter ‘j’

center element

search interval

found !
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Algorithm Examples
procedure binary_search(x: integer; a1, a2, …, an: 

integers)
i := 1   {i is left endpoint of search interval}
j := n  {j is right endpoint of search interval}
while (i < j)
begin

m := (i + j)/2
if x > am then i := m + 1
else j := m

end
if x = ai then location := i
else location := 0
{location is the subscript of the term that equals x, or 
is zero if x is not found}
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Algorithm Examples

Obviously, on sorted sequences, binary search is 

more efficient than linear search.

How can we analyze the efficiency of algorithms?

We can measure the 

• time (number of elementary computations) and

• space (number of memory cells) that the algorithm 

requires.

These measures are called computational 

complexity and space complexity, respectively.
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Complexity

What is the time complexity of the linear search 
algorithm?

We will determine the worst-case number of 
comparisons as a function of the number n of terms in 
the sequence.

The worst case for the linear algorithm occurs when 
the element to be located is not included in the 
sequence.

In that case, every item in the sequence is compared 
to the element to be located.
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Complexity

For n elements, the loop

while (i ≤ n and x ≠ ai)

i := i + 1

is processed n times, requiring 2n comparisons.

When it is entered for the (n+1)th time, only the 

comparison i ≤ n is executed and terminates the loop.

Finally, the comparison 

if i ≤ n then location := i

is executed, so all in all we have a worst-case time 

complexity of 2n + 2.
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Complexity

What is the time complexity of the binary search 

algorithm?

Again, we will determine the worst-case number of 

comparisons as a function of the number n of terms in 

the sequence.

Let us assume there are n = 2k elements in the list, 

which means that k = log n.

If n is not a power of 2, it can be considered part of a 

larger list, where 2k < n < 2k+1.
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Complexity

In the first cycle of the loop

while (i < j)

begin

m := (i + j)/2
if x > am then i := m + 1

else j := m

end

the search interval is restricted to 2k-1 elements, using 

two comparisons.
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Complexity

In the second cycle, the search interval is restricted to 

2k-2 elements, again using two comparisons.

This is repeated until there is only one (20) element 

left in the search interval. 

At this point 2k comparisons have been conducted.
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Complexity

Then, the comparison 

while (i < j)

exits the loop, and a final comparison

if x = ai then location := i

determines whether the element was found.

Therefore, the overall time complexity of the binary 

search algorithm is 2k + 2 = 2 log n + 2.
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Complexity

In general, we are not so much interested in the 

time and space complexity for small inputs.

For example, while the difference in time complexity 

between linear and binary search is meaningless for 

a sequence with n = 10, it is gigantic for n = 230.
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Complexity

For example, let us assume we have two algorithms 

A and B that solve the same class of problems.

And suppose the time complexity of A is 5,000n, the 

one for B is 1.1n for an input with n elements.

15 Sept 2015 54

Complexity

Comparison: time complexity of algorithms A and B

Algorithm A Algorithm BInput Size

n

10

100

1,000

1,000,000

5,000n

50,000

500,000

5,000,000

5⋅109

1.1n

3

2.5⋅1041

13,781

4.8⋅1041392
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Complexity

This means that algorithm B cannot be used for 

large inputs, while running algorithm A is still 

feasible.

So what is important is the growth of the complexity 

functions.

The growth of time and space complexity with  

increasing input size n is a suitable measure for the 

comparison of algorithms. 


