

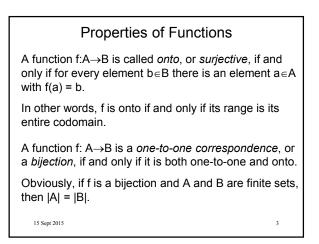
Properties of Functions

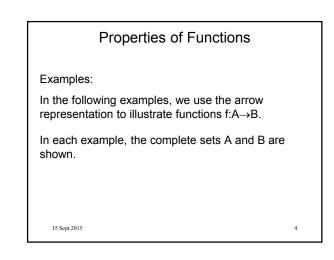
A function f:A \rightarrow B with A,B \subseteq R is called *strictly increasing*, if $\forall x,y \in A \ (x < y \rightarrow f(x) < f(y)),$ and *strictly decreasing*, if $\forall x,y \in A \ (x < y \rightarrow f(x) > f(y)).$

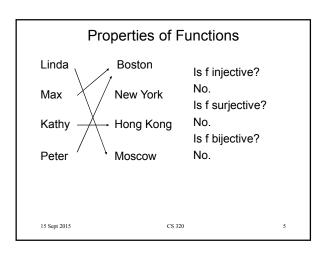
Obviously, a function that is either strictly increasing or strictly decreasing is one-to-one.

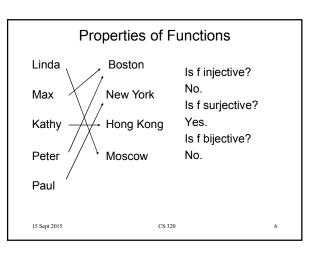
2

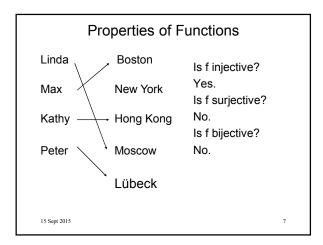
15 Sept 2015

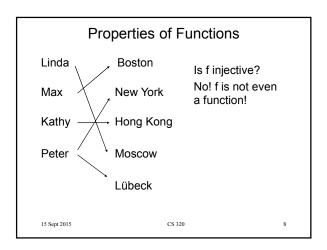


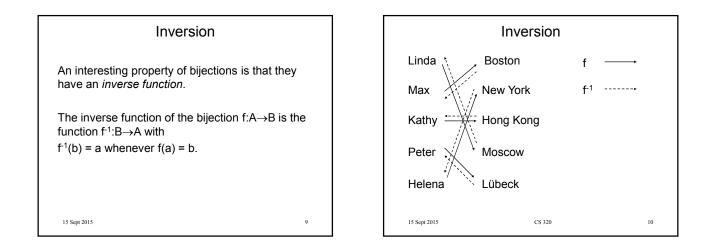




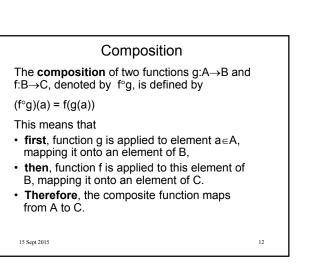




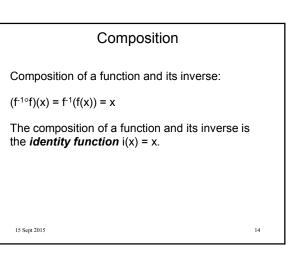




Inversion				
Example:	The inverse function f ⁻¹ is given by:			
f(Linda) = Moscow f(Max) = Boston f(Kathy) = Hong Kong f(Peter) = Lübeck f(Helena) = New York	f ⁻¹ (Moscow) = Linda f ⁻¹ (Boston) = Max f ⁻¹ (Hong Kong) = Kathy f ⁻¹ (Lübeck) = Peter f ⁻¹ (New York) = Helena			
Clearly, f is bijective.	Inversion is only possible for bijections (= invertible functions)			



Composition Example: f(x) = 7x - 4, g(x) = 3x, $f: \mathbf{R} \rightarrow \mathbf{R}, g: \mathbf{R} \rightarrow \mathbf{R}$ $(f^{\circ}g)(5) = f(g(5)) = f(15) = 105 - 4 = 101$ $(f^{\circ}g)(x) = f(g(x)) = f(3x) = 21x - 4$



Graphs The **graph** of a function f:A \rightarrow B is the set of ordered pairs {(a, b) | a \in A and f(a) = b}. The graph is a subset of A×B that can be used to visualize f in a two-dimensional coordinate system.

Floor and Ceiling Functions
The floor and ceiling (or roof) functions map the real numbers onto the integers $(\mathbf{R}\rightarrow\mathbf{Z})$.
The floor function assigns to $r \in \mathbf{R}$ the largest $z \in \mathbf{Z}$ with $z \le r$, denoted by $\lfloor r \rfloor$.
Examples: $\lfloor 2.3 \rfloor = 2, \lfloor 2 \rfloor = 2, \lfloor 0.5 \rfloor = 0, \lfloor -3.5 \rfloor = -4$
The <i>ceiling</i> function assigns to $r \in \mathbf{R}$ the smallest $z \in \mathbf{Z}$ with $z \ge r$, denoted by $\lceil r \rceil$.
Examples: $\lceil 2.3 \rceil = 3, \lceil 2 \rceil = 2, \lceil 0.5 \rceil = 1, \lceil -3.5 \rceil = -3$
15 Sept 2015 16

Partial Functions

A partial function f from A to B is a function $f:C \rightarrow B$ where C is a subset of A.

15 Sept 2015

17

13

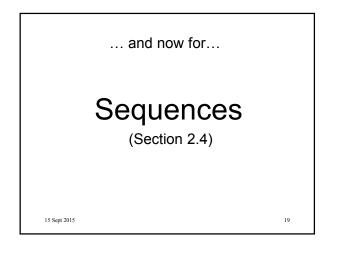
Exercises

I recommend Exercises 1, 5, and 17 in Section 2.3.

It may also be useful to study the graph displays in that section.

Another question: What do all graph displays for any function $f: \mathbf{R} \rightarrow \mathbf{R}$ have in common?

15 Sept 2015



Sequences						
Sequences represent ordered lists of elements.						
A sequence is defined as a function from a subset of N to a set S. We use the notation a_n to denote the image of the integer n. We call a_n a term of the sequence.						
Example:						
subset of N:	1	2	3	4	5	
				ļ		
S:	2	4	6	8	10	
15 Sept 2015					2	0

SequencesWe use the notation $\{a_n\}$ to describe a sequence.Important: Do not confuse this with the $\{\}$ used in set
notation.It is convenient to describe a sequence with a
formula.For example, the sequence on the previous slide
can be specified as $\{a_n\}$, where $a_n = 2n$.

The Formula GameWhat are the formulas that describe the
following sequences a_1, a_2, a_3, \dots ? $1, 3, 5, 7, 9, \dots$ $a_n = 2n - 1$ $-1, 1, -1, 1, -1, \dots$ $a_n = (-1)^n$ $2, 5, 10, 17, 26, \dots$ $a_n = n^2 + 1$ $0.25, 0.5, 0.75, 1, 1.25 \dots$ $a_n = 3^n$ $3, 9, 27, 81, 243, \dots$ $a_n = 3^n$

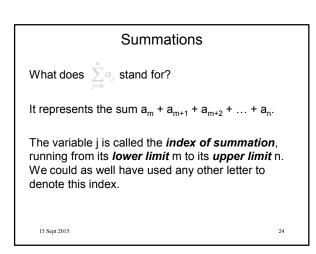
Strings

A **String** can be thought of as a finite sequence of characters, denoted by $a_1a_2a_3...a_n$.

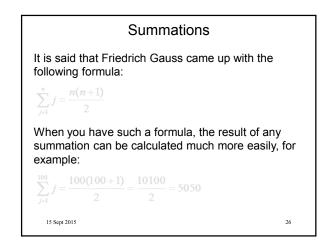
The *length* of a string S is the number of terms that it consists of.

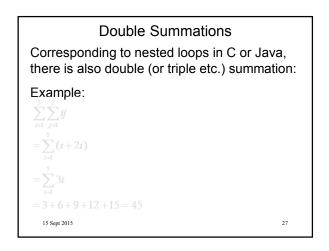
The *empty string* contains no terms at all. It has length zero.

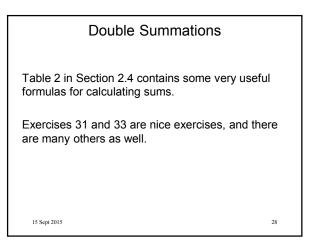
15 Sept 2015

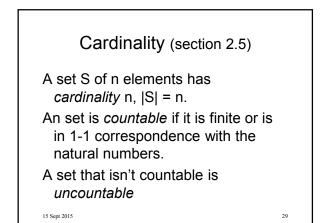


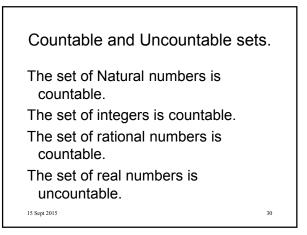
Summations How can we express the sum of the first 1000 terms of the sequence $\{a_n\}$ with $a_n=n^2$ for
n = 1, 2, 3, ?
We write it as $\sum f^2$.
What is the value of $\sum_{j=1}^{6} j$?
lt is 1 + 2 + 3 + 4 + 5 + 6 = 21.
What is the value of $\sum_{j=1}^{100} j$?
It is so much work to calculate this
15 Sept 2015 2:









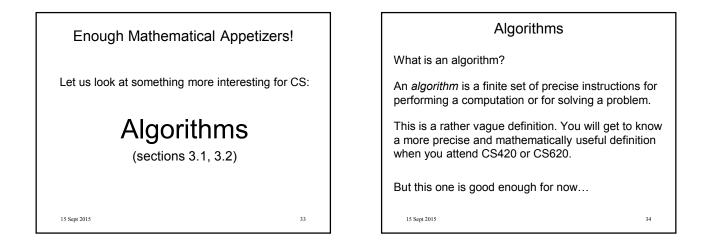


Countable Sets Theorem. A set S is countable iff its elements can be counted in a finite or infinite sequence. $(S = \{a_1, a_2, a_3, ...\})$ Theorem: Any subset of a countable set is countable. Theorem. If A and B are countable then $A \cup B$ is countable. Theorem: A countable union of countable sets is countable. 15 Sept 2015 31

Countability Theorem (Cantor): the set of real numbers is uncountable. Proof: Cantor's diagonalization process shows that no sequence can list every point in the unit interval [0, 1]. See example 5, page 173, for this proof.

32

15 Sept 2015

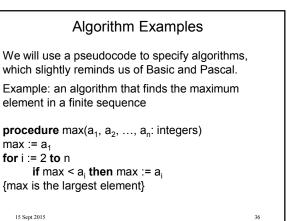


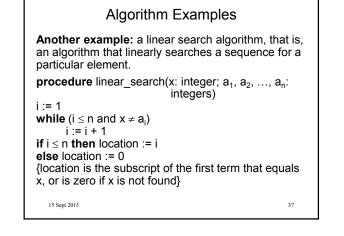
Algorithms

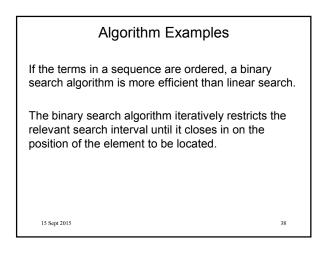
Properties of algorithms:

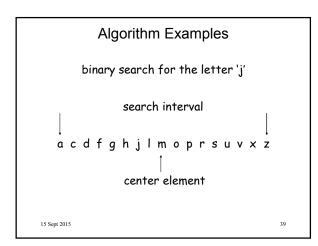
- · Input from a specified set,
- Output to a specified set (solution),
- · Definiteness of every step in the computation,
- · Correctness of output for every possible input,
- · Finiteness of the number of calculation steps,
- · Effectiveness of each calculation step and
- · Generality for a class of problems.

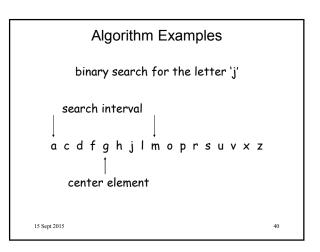
15 Sept 2015

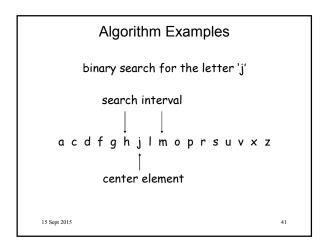


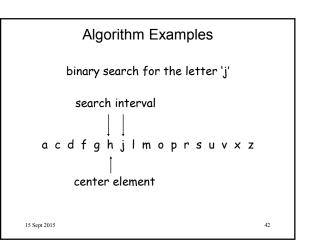


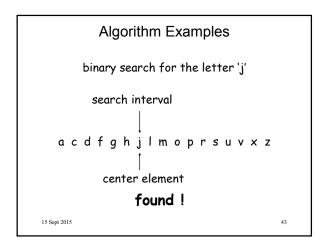


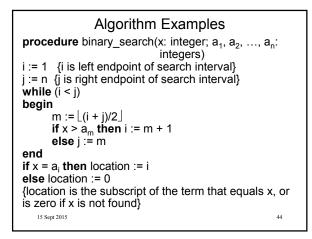




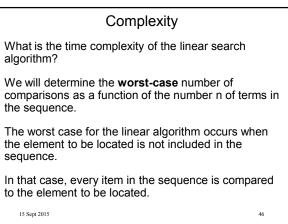








Algorithm Examples	
Obviously, on sorted sequences, binary search is What is more efficient than linear search. What is	
How can we analyze the efficiency of algorithms? We will compare	
We can measure the the sec	
 time (number of elementary computations) and space (number of memory cells) that the algorithm requires. 	em
These measures are called computational complexity and space complexity, respectively.In that to the end	
15 Sept 2015 45 15 Sept 2	201



Complexity

For n elements, the loop

while
$$(i \le n \text{ and } x \ne a_i)$$

i := i + 1

is processed n times, requiring 2n comparisons. When it is entered for the (n+1)th time, only the comparison $i\leq n$ is executed and terminates the loop. Finally, the comparison

if $i \le n$ then location := i

is executed, so all in all we have a worst-case time complexity of 2n + 2.

15 Sept 2015

Complexity
What is the time complexity of the binary search algorithm?
Again, we will determine the worst-case number of comparisons as a function of the number n of terms in the sequence.
Let us assume there are $n = 2^k$ elements in the list, which means that $k = \log n$.
If n is not a power of 2, it can be considered part of a larger list, where $2^k < n < 2^{k+1}$.
15 Sept 2015 48

Complexity

```
In the first cycle of the loop

while (i < j)

begin

m := \lfloor (i + j)/2 \rfloor

if x > a_m then i := m + 1

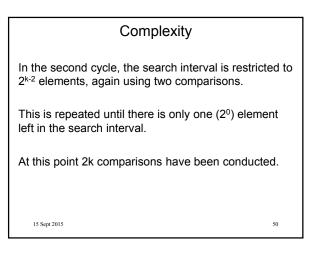
else j := m

end

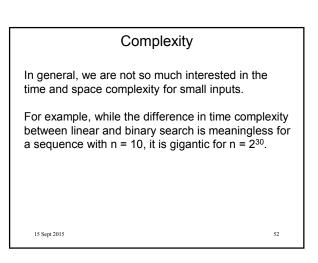
the search interval is restricted to 2^{k-1} elements, using

two comparisons.
```

15 Sept 2015



Complexity Then, the comparison while (i < j)exits the loop, and a final comparison if $x = a_i$ then location := i determines whether the element was found. Therefore, the overall time complexity of the binary search algorithm is $2k + 2 = 2 \lceil \log n \rceil + 2$.



Complexity

For example, let us assume we have two algorithms A and B that solve the same class of problems.

And suppose the time complexity of A is 5,000n, the one for B is $[1.1^n]$ for an input with n elements.

15 Sept 2015

53

Complexity					
Comparison: time complexity of algorithms A and B					
	Input Size	Algorithm A	Algorithm B		
	n	5,000n	[1.1 ⁿ]		
	10	50,000	3		
	100	500,000	13,781		
	1,000	5,000,000	2.5·10 ⁴¹		
	1,000,000	5.10 ⁹	4.8·10 ⁴¹³⁹²		
	15 Sept 2015		54		

Complexity

This means that algorithm B cannot be used for large inputs, while running algorithm A is still feasible.

So what is important is the **growth** of the complexity functions.

The growth of time and space complexity with increasing input size n is a suitable measure for the **comparison** of algorithms.

15 Sept 2015