
1

15 Sept 2015 1

Functions continued
(still section 2.3)

15 Sept 2015 2

Properties of Functions

A function f:A→B with A,B ⊆ R is called strictly

increasing, if

∀x,y∈A (x < y → f(x) < f(y)),

and strictly decreasing, if

∀x,y∈A (x < y → f(x) > f(y)).

Obviously, a function that is either strictly increasing

or strictly decreasing is one-to-one.

15 Sept 2015 3

Properties of Functions

A function f:A→B is called onto, or surjective, if and

only if for every element b∈B there is an element a∈A

with f(a) = b.

In other words, f is onto if and only if its range is its

entire codomain.

A function f: A→B is a one-to-one correspondence, or

a bijection, if and only if it is both one-to-one and onto.

Obviously, if f is a bijection and A and B are finite sets,

then |A| = |B|.

15 Sept 2015 4

Properties of Functions

Examples:

In the following examples, we use the arrow

representation to illustrate functions f:A→B.

In each example, the complete sets A and B are

shown.

15 Sept 2015 CS 320 5

Properties of Functions

Is f injective?

No.

Is f surjective?

No.

Is f bijective?

No.

Linda

Max

Kathy

Peter

Boston

New York

Hong Kong

Moscow

15 Sept 2015 CS 320 6

Properties of Functions

Is f injective?

No.

Is f surjective?

Yes.

Is f bijective?

No.

Linda

Max

Kathy

Peter

Boston

New York

Hong Kong

Moscow

Paul

2

15 Sept 2015 7

Properties of Functions

Is f injective?

Yes.

Is f surjective?

No.

Is f bijective?

No.

Linda

Max

Kathy

Peter

Boston

New York

Hong Kong

Moscow

Lübeck

15 Sept 2015 CS 320 8

Properties of Functions

Is f injective?

No! f is not even

a function!

Linda

Max

Kathy

Peter

Boston

New York

Hong Kong

Moscow

Lübeck

15 Sept 2015 9

Inversion

An interesting property of bijections is that they

have an inverse function.

The inverse function of the bijection f:A→B is the

function f-1:B→A with

f-1(b) = a whenever f(a) = b.

15 Sept 2015 CS 320 10

Inversion

Linda

Max

Kathy

Peter

Boston

New York

Hong Kong

Moscow

LübeckHelena

f

f-1

15 Sept 2015 11

Inversion

Example:

f(Linda) = Moscow

f(Max) = Boston

f(Kathy) = Hong Kong

f(Peter) = Lübeck

f(Helena) = New York

Clearly, f is bijective.

The inverse function f-1

is given by:

f-1(Moscow) = Linda

f-1(Boston) = Max

f-1(Hong Kong) = Kathy

f-1(Lübeck) = Peter

f-1(New York) = Helena

Inversion is only

possible for bijections

(= invertible functions)
15 Sept 2015 12

Composition

The composition of two functions g:A→B and
f:B→C, denoted by f°g, is defined by

(f°g)(a) = f(g(a))

This means that

• first, function g is applied to element a∈A,
mapping it onto an element of B,

• then, function f is applied to this element of
B, mapping it onto an element of C.

• Therefore, the composite function maps
from A to C.

3

15 Sept 2015 13

Composition

Example:

f(x) = 7x – 4, g(x) = 3x,

f:R→R, g:R→R

(f°g)(5) = f(g(5)) = f(15) = 105 – 4 = 101

(f°g)(x) = f(g(x)) = f(3x) = 21x - 4

15 Sept 2015 14

Composition

Composition of a function and its inverse:

(f-1°f)(x) = f-1(f(x)) = x

The composition of a function and its inverse is

the identity function i(x) = x.

15 Sept 2015 15

Graphs

The graph of a function f:A→B is the set of

ordered pairs {(a, b) | a∈A and f(a) = b}.

The graph is a subset of A×B that can be used to

visualize f in a two-dimensional coordinate

system.

15 Sept 2015 16

Floor and Ceiling Functions

The floor and ceiling (or roof) functions map the

real numbers onto the integers (R→Z).

The floor function assigns to r∈R the largest z∈Z

with z≤r, denoted by r.

Examples: 2.3 = 2, 2 = 2, 0.5 = 0, -3.5 = -4

The ceiling function assigns to r∈R the smallest

z∈Z with z≥r, denoted by r.

Examples: 2.3 = 3, 2 = 2, 0.5 = 1, -3.5 = -3

Partial Functions

A partial function f from A to B

is a function

f:C→B

where C is a subset of A.

15 Sept 2015 17 15 Sept 2015 18

Exercises

I recommend Exercises 1, 5, and 17 in Section 2.3.

It may also be useful to study the graph displays in

that section.

Another question: What do all graph displays for

any function f:R→R have in common?

4

15 Sept 2015 19

… and now for…

Sequences
(Section 2.4)

15 Sept 2015 20

Sequences

Sequences represent ordered lists of elements.

A sequence is defined as a function from a subset of
N to a set S. We use the notation an to denote the
image of the integer n. We call an a term of the
sequence.

Example:

subset of N: 1 2 3 4 5 …

S: 2 4 6 8 10 …

15 Sept 2015 21

Sequences

We use the notation {an} to describe a sequence.

Important: Do not confuse this with the {} used in set

notation.

It is convenient to describe a sequence with a

formula.

For example, the sequence on the previous slide

can be specified as {an}, where an = 2n.

15 Sept 2015 22

The Formula Game

1, 3, 5, 7, 9, … an = 2n - 1

-1, 1, -1, 1, -1, … an = (-1)n

2, 5, 10, 17, 26, … an = n2 + 1

0.25, 0.5, 0.75, 1, 1.25 … an = 0.25n

3, 9, 27, 81, 243, … an = 3n

What are the formulas that describe the

following sequences a1, a2, a3, … ?

15 Sept 2015 23

Strings

A String can be thought of as a finite sequence of

characters, denoted by a1a2a3…an.

The length of a string S is the number of terms that

it consists of.

The empty string contains no terms at all. It has

length zero.

15 Sept 2015 24

Summations

It represents the sum am + am+1 + am+2 + … + an.

The variable j is called the index of summation,

running from its lower limit m to its upper limit n.

We could as well have used any other letter to

denote this index.

What does stand for?

5

15 Sept 2015 25

Summations

It is 1 + 2 + 3 + 4 + 5 + 6 = 21.

We write it as .

What is the value of ?

It is so much work to calculate this…

What is the value of ?

How can we express the sum of the first 1000

terms of the sequence {an} with an=n2 for

n = 1, 2, 3, … ?

15 Sept 2015 26

Summations

It is said that Friedrich Gauss came up with the

following formula:

When you have such a formula, the result of any

summation can be calculated much more easily, for

example:

15 Sept 2015 27

Double Summations

Corresponding to nested loops in C or Java,

there is also double (or triple etc.) summation:

Example:

15 Sept 2015 28

Double Summations

Table 2 in Section 2.4 contains some very useful

formulas for calculating sums.

Exercises 31 and 33 are nice exercises, and there

are many others as well.

15 Sept 2015 29

Cardinality (section 2.5)

A set S of n elements has

cardinality n, |S| = n.

An set is countable if it is finite or is

in 1-1 correspondence with the

natural numbers.

A set that isn’t countable is

uncountable

15 Sept 2015 30

Countable and Uncountable sets.

The set of Natural numbers is

countable.

The set of integers is countable.

The set of rational numbers is

countable.

The set of real numbers is

uncountable.

6

15 Sept 2015 31

Countable Sets

Theorem. A set S is countable iff its elements

can be counted in a finite or infinite

sequence. (S = {a1, a2, a3, …})

Theorem: Any subset of a countable set is

countable.

Theorem. If A and B are countable then A∪B is

countable.

Theorem: A countable union of countable sets

is countable.

15 Sept 2015 32

Countability

Theorem (Cantor): the set of real

numbers is uncountable.

Proof: Cantor’s diagonalization process

shows that no sequence can list every

point in the unit interval [0, 1].

See example 5, page 173, for this proof.

15 Sept 2015 33

Enough Mathematical Appetizers!

Let us look at something more interesting for CS:

Algorithms
(sections 3.1, 3.2)

15 Sept 2015 34

Algorithms

What is an algorithm?

An algorithm is a finite set of precise instructions for

performing a computation or for solving a problem.

This is a rather vague definition. You will get to know

a more precise and mathematically useful definition

when you attend CS420 or CS620.

But this one is good enough for now…

15 Sept 2015 35

Algorithms

Properties of algorithms:

• Input from a specified set,

• Output to a specified set (solution),

• Definiteness of every step in the computation,

• Correctness of output for every possible input,

• Finiteness of the number of calculation steps,

• Effectiveness of each calculation step and

• Generality for a class of problems.

15 Sept 2015 36

Algorithm Examples

We will use a pseudocode to specify algorithms,

which slightly reminds us of Basic and Pascal.

Example: an algorithm that finds the maximum

element in a finite sequence

procedure max(a1, a2, …, an: integers)

max := a1

for i := 2 to n

if max < ai then max := ai

{max is the largest element}

7

15 Sept 2015 37

Algorithm Examples

Another example: a linear search algorithm, that is,
an algorithm that linearly searches a sequence for a
particular element.

procedure linear_search(x: integer; a1, a2, …, an:
integers)

i := 1
while (i ≤ n and x ≠ ai)

i := i + 1
if i ≤ n then location := i
else location := 0
{location is the subscript of the first term that equals
x, or is zero if x is not found}

15 Sept 2015 38

Algorithm Examples

If the terms in a sequence are ordered, a binary

search algorithm is more efficient than linear search.

The binary search algorithm iteratively restricts the

relevant search interval until it closes in on the

position of the element to be located.

15 Sept 2015 39

Algorithm Examples

a c d f g h j l m o p r s u v x z

binary search for the letter ‘j’

center element

search interval

15 Sept 2015 40

Algorithm Examples

a c d f g h j l m o p r s u v x z

binary search for the letter ‘j’

center element

search interval

15 Sept 2015 41

Algorithm Examples

a c d f g h j l m o p r s u v x z

binary search for the letter ‘j’

center element

search interval

15 Sept 2015 42

Algorithm Examples

a c d f g h j l m o p r s u v x z

binary search for the letter ‘j’

center element

search interval

8

15 Sept 2015 43

Algorithm Examples

a c d f g h j l m o p r s u v x z

binary search for the letter ‘j’

center element

search interval

found !

15 Sept 2015 44

Algorithm Examples
procedure binary_search(x: integer; a1, a2, …, an:

integers)
i := 1 {i is left endpoint of search interval}
j := n {j is right endpoint of search interval}
while (i < j)
begin

m := (i + j)/2
if x > am then i := m + 1
else j := m

end
if x = ai then location := i
else location := 0
{location is the subscript of the term that equals x, or
is zero if x is not found}

15 Sept 2015 45

Algorithm Examples

Obviously, on sorted sequences, binary search is

more efficient than linear search.

How can we analyze the efficiency of algorithms?

We can measure the

• time (number of elementary computations) and

• space (number of memory cells) that the algorithm

requires.

These measures are called computational

complexity and space complexity, respectively.

15 Sept 2015 46

Complexity

What is the time complexity of the linear search
algorithm?

We will determine the worst-case number of
comparisons as a function of the number n of terms in
the sequence.

The worst case for the linear algorithm occurs when
the element to be located is not included in the
sequence.

In that case, every item in the sequence is compared
to the element to be located.

15 Sept 2015 47

Complexity

For n elements, the loop

while (i ≤ n and x ≠ ai)

i := i + 1

is processed n times, requiring 2n comparisons.

When it is entered for the (n+1)th time, only the

comparison i ≤ n is executed and terminates the loop.

Finally, the comparison

if i ≤ n then location := i

is executed, so all in all we have a worst-case time

complexity of 2n + 2.

15 Sept 2015 48

Complexity

What is the time complexity of the binary search

algorithm?

Again, we will determine the worst-case number of

comparisons as a function of the number n of terms in

the sequence.

Let us assume there are n = 2k elements in the list,

which means that k = log n.

If n is not a power of 2, it can be considered part of a

larger list, where 2k < n < 2k+1.

9

15 Sept 2015 49

Complexity

In the first cycle of the loop

while (i < j)

begin

m := (i + j)/2
if x > am then i := m + 1

else j := m

end

the search interval is restricted to 2k-1 elements, using

two comparisons.

15 Sept 2015 50

Complexity

In the second cycle, the search interval is restricted to

2k-2 elements, again using two comparisons.

This is repeated until there is only one (20) element

left in the search interval.

At this point 2k comparisons have been conducted.

15 Sept 2015 51

Complexity

Then, the comparison

while (i < j)

exits the loop, and a final comparison

if x = ai then location := i

determines whether the element was found.

Therefore, the overall time complexity of the binary

search algorithm is 2k + 2 = 2 log n + 2.

15 Sept 2015 52

Complexity

In general, we are not so much interested in the

time and space complexity for small inputs.

For example, while the difference in time complexity

between linear and binary search is meaningless for

a sequence with n = 10, it is gigantic for n = 230.

15 Sept 2015 53

Complexity

For example, let us assume we have two algorithms

A and B that solve the same class of problems.

And suppose the time complexity of A is 5,000n, the

one for B is 1.1n for an input with n elements.

15 Sept 2015 54

Complexity

Comparison: time complexity of algorithms A and B

Algorithm A Algorithm BInput Size

n

10

100

1,000

1,000,000

5,000n

50,000

500,000

5,000,000

5⋅109

1.1n

3

2.5⋅1041

13,781

4.8⋅1041392

10

15 Sept 2015 55

Complexity

This means that algorithm B cannot be used for

large inputs, while running algorithm A is still

feasible.

So what is important is the growth of the complexity

functions.

The growth of time and space complexity with

increasing input size n is a suitable measure for the

comparison of algorithms.

