Let us getinto...

Number Theory
(chapter 4)
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Introduction to Number Theory

Number theory is about integers and their
properties.

We will start with the basic principles of
« divisibility,

» greatest common divisors,

* least common multiples, and

* modular arithmetic

and look at some relevant algorithms.
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Division

If a and b are integers with a = 0, we say that
a divides b if there is an integer c so that b = ac.

When a divides b we say that a is a factor of b and
that b is a multiple of a.

The notation a | b means that a divides b.

We write @ X b when a does not divide b
(see book for correct symbol).
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Divisibility Theorems (Th. 1, p. 238)
For integers a, b, and c it is true that

-ifalbanda|c,thena| (b +c)
Example: 3|6and 3|9, so 3| 15.

 ifa| b, then a| bc for all integers c
Example: 5| 10,s05]20,5]|30, 5|40, ...

-ifalbandb]|c,thena|c
Example: 4 |8 and 8 | 24, so 4 | 24.
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Proof of Theorem 1, p. 238

Ifalbanda|c,thena](b+c)

Proof: a | b means b = au for some
integer u.

b =auand c =av, where uand v are
integers.

Then b+c = au + av = a(u+tv), so
al(b+c)
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Proof continued.

* Ifa| b, then a | bc for all integers c.
proof: b = au, so bc = auc, so a| bc.

Ifalbandb|c,thena|c
proof: b = au, ¢ = bv, so ¢ = auv, and so
ajc.
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Corollary 1, p. 239

If a, b and c are integers such that
a|banda|cthena| mb+nc,
where m and n are integers.

Proof:

This follows directly from Theorem 1.
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The Division Algorithm (Th. 2, p 239)

Let a be an integer and d a positive integer.
Then there are unique integers q and r, with
0<r<d,suchthata=dq+r.

In the above equation,

* dis called the divisor,

* ais called the dividend,

+ q is called the quotient, we say q = a div d, and

* ris called the remainder. We say r = a mod d
(See Def. 2, page 239)
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The Division Algorithm
Example:
When we divide 17 by 5, we have
17=53+2.
« 17 is the dividend,
* 5 is the divisor,

« 3 is the quotient, and
e 2 is the remainder.
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The Division Algorithm
Another example:
What happens when we divide -11 by 3 ?
Note that the remainder cannot be negative.
-11=3-(4) + 1.
-11 is the dividend,
3 is the divisor,

-4 is the quotient, and
1 is the remainder.
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The Division Algorithm
Example:
When we divide 21 by 5, we have
21=54+1.
« 21 is the dividend,
* 5 is the divisor,

* 4 is called the quotient, and
« 1 is called the remainder.
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Proof of the Division Algorithm

Given integers a, d>0, 3 unique q,r
suchthata=dqg+r,and 0<r<d.
Proof. To see this consider the set of
all multiples of d on the number line.

Each integer a can be written
uniquely as dq +r, where dq is a, or
the multiple of d to the immediate left
of a.
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Clinching the uniqueness

Suppose a=dqg,+ry, 0<r,<d, and
a=dgy+r, 0<r,<d.

Then subtracting we get
0=d(qs-a) + (ry—rp)

Thend | (r;—ry)and —d < (r;—r,) <d,

so(ri—ry)=0

and hence g, = Q.

This proves uniqueness of gand r.
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Primes

A positive integer p greater than 1 is called prime if
the only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not
prime is called composite.

The Fundamental Theorem of Arithmetic:
(p. 258)

Every positive integer bigger than 1 can be written
uniquely as the product of primes, where the prime
factors are written in order of increasing size.

(proof later...)
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Primes
Examples:
15= 35
48 = 2:2:2:2:3=243
17 = 17

100= 2:2:5:5=22:52
512=  2:2:2:2:2:2:2:2:2 = 29
515=  5-103

28=  2:27=227
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Theorem 2, p. 258

If n is a composite integer then n has a
prime factor < \n. (< sqrt(n))

Proof: If n is composite then n = uv,
where one of u and v must be
<+n.

This factor < Vn then must have a prime
factor also < Vn.
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Infinitely many primes...

Theorem: There are infinitely many
primes.

Proof: Suppose there are only n primes,
P1, P2 -++5 Pn-

Thenu =p,p,...p,+ 1 has a prime divisor but it
can’'t be one of py, py, ..., Pp-
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Greatest Common Divisors

Let a and b be integers, not both zero.
The largest integer d such thatd |aandd | bis
called the greatest common divisor of a and b.

The greatest common divisor of a and b is denoted
by gcd(a, b).

Example 1: What is gcd(48, 72) ?

The positive common divisors of 48 and 72 are
1,2,3,4,6, 8,12, 16, and 24, so gcd(48, 72) = 24.
Example 2: What is gcd(19, 72) ?

The only positive common divisor of 19 and 72 is
1, so gcd(19, 72) = 1.
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Greatest Common Divisors

Using prime factorizations:

a=ps Po2... P, b =pePrpyl2... ppla,

where p; <p,<...<p,anda, b,e Nfor1<i<n
ged(a, b) = pymin(@;. ;) p,min(ay by) | p min(ay, by)
Example:

a=60=223"5"

b=54=213350

gcd(a,b)= 213150 =6
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Relatively Prime Integers
Definition:
Two integers a and b are relatively prime if
gcd(a, b) = 1.
This means that no prime divides both a and b.

Examples:

Are 15 and 28 relatively prime?
Yes, gcd(15, 28) = 1.

Are 55 and 28 relatively prime?
Yes, gcd(55, 28) = 1.

Are 35 and 28 relatively prime?
No, gcd(35, 28) = 7.
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Relatively Prime Integers
Definition:
The integers a4, a,, ..., a, are pairwise relatively
prime if gcd(a, &) = 1 whenever 1 <i<j<n.
Examples:

Are 15, 17, and 27 pairwise relatively prime?
No, because gcd(15, 27) = 3.

Are 15, 17, and 28 pairwise relatively prime?
Yes, because gcd(15, 17) = 1, gcd(15, 28) = 1 and
gcd(17, 28) = 1.
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Least Common Multiples
Definition:
The least common multiple of the positive integers

a and b is the smallest positive integer that is
divisible by both a and b.

We denote the least common multiple of a and b by
Icm(a, b).

Examples:

lem(3, 7) = 21

Icm(4, 6) = 12

lem(5, 10) =10
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Least Common Multiples
Using prime factorizations:

a=ps Po2... Ppn, b =peP1 pP2... pPa,
where p; <p,<...<p,anda, b,e Nfor1<i<n

Icm(a, b) = p1max(a1, |:>1 ) pzmax(az, bz) pnmax(an, bn)
Example:

a=60=223"5"

b =54 = 213350

lcm(a, b) = 22 335" =4.27.5 = 540
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GCD and LCM
a=60= {22 @)
b =54 = (20) (3%} 6°)
ged(a, b) = (21315° D=6

: =540

lem(a, b) = 22395 _

Theorem: a-b = gcd(a,b)-lcm(a,b)
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Th. a-b = gcd(a,b)-lcm(a,b)

Proof. Express a and b as products of
primes.

If a prime p occurs with power i in a and
power jin b, and i <=jthen

p occurs with power i in gcd(a,b) and
power j in lcm(a,b), thus with power i+j
in the products a - b and gcd(a,b) -
Icm(a,b)

This gives our theorem, since it holds for
each such prime p.
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Modular Arithmetic

Let a be an integer and m be a positive integer.
We denote by a mod m the remainder when a is
divided by m.

Examples:
9mod 4= 1
9mod3= 0
9mod 10= 9
-13mod 4= 3
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Congruences

Let a and b be integers and m be a positive integer.
We say that a is congruent to b modulo m if
m divides a — b.

We use the notation a =b (mod m) to indicate that a
is congruent to b modulo m.

In other words (Th. 3, page 241):
a=b (mod m) if and only if a mod m = b mod m.
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Congruences

Examples:

Is it true that 46 = 68 (mod 11) ?
Yes, because 11| (46 — 68).

Is it true that 46 = 68 (mod 22)?
Yes, because 22 | (46 — 68).

For which integers z is it true that z= 12 (mod 10)?
It is true for any z<{...,-28, -18, -8, 2, 12, 22, 32, ...}

Theorem (Th. 4, p. 241): Let m be a positive integer.

The integers a and b are congruent modulo m if and
only if there is an integer k such that a = b + km.
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Congruences

Theorem (Th. 5, p. 242): Let m be a positive integer.

If a=b (mod m) and ¢ =d (mod m), then
a+c=b+d(modm)and ac=bd (mod m).

Proof:

We know that a=b (mod m) and ¢ =d (mod m)
implies that there are integers s and t with
b=a+smandd=c+tm.

Therefore,
b+d=(a+sm)+(c+tm)=(a+c)+m(s+t)and
bd = (a + sm)(c + tm) = ac + m(at + cs + stm).
Hence, a + c=b +d (mod m) and ac = bd (mod m).
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A useful theorem on gcd

Theorem: ifa=bq+r(ab,q,r, are
integers) then gcd(a,b) = gcd(b,r)
Proof: An integer x divides both a and b iff it divides

both b and r. (Do you see why? Do you see the
symmetry in the roles of a and r?)

Hence (a,b) and (b,r) have the same set of common
divisors.

Hence gcd(a,b) = gcd(b,r). Thisis Lemma 1, p. 268.
This theorem is the basis of the Euclidean Algorithm.
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The Euclidean Algorithm

The Euclidean Algorithm finds the greatest
common divisor of two integers a and b.

For example, if we want to find gcd(287, 91),
we divide 287 (the larger number) by 91 (the
smaller one):

287 =913+ 14

l\rl]ow, applying our previous Theorem, we see
that

gcd(287, 91) = gcd(91, 14)

We have reduced the original problem to a
smaller one.

17 Sept 2015 €S 320 31

The Euclidean Algorithm
gcd(287, 91) = ged(91, 14).

We now divide 14 into 91:
91=14-6+7

So we have
gcd(91, 14) = gcd(14,7).

We recognize that the answer is 7, but for the
algorithm we have to continue, divide 7 into 14.

14=7-2+0, so7]|14.
Thus 7 = ged(14, 7) = ged(91, 14) = ged(287, 91)
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The Euclidean Algorithm

To summarize:

287 =91.3+ 14, so
gcd(287, 91) = gcd(91, 14)
91=146+7,
gcd(91, 14) = gcd(14, 7)
14=72+0,
7|14,s09cd(14,7)=7

Thus gcd(287, 91) = 7.
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The Euclidean Algorithm

The Euclidean Algorithm finds the greatest

common divisor of two integers a and b.
1. Ifb<a, divide b into a, get remainder r,
a=bqq+ry, 0 <r; <b. If r;=0 we are done
Now gcd(a,b) = gcd(b,r;). Repeat until remainder is 0.
2. b=rqy+r,0=<r,<ry. Ifr,=0 we are done
Now gcd(b,r1) = ged(r1,r2).
3. =03+, 0sn<r,
Now gcd(ry,ry) = ged(ry,rs).
4.  Since the remainders are decreasing, we'll hit O after
finitely many (very few, actually) steps.
5. Whenr, =r,:1qn+1 + 0, we have
I'n+1 = ng(rn! rn+1) = ng (rn: I'n-1) == ng(avb)

17 Sept 2015 €S 320 34

The Euclidean Algorithm

In pseudocode, the algorithm can be implemented
as follows:

procedure gcd(a, b: positive integers)

X:=a

y:=b

whiley =0

begin
r:=xmody
X:=y
yi=r

end

{xis gcd(a, b)}
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Arithmetic Modulo m

Definitions: Let Z,, be the set of nonnegative integers
less than m:
{0,1, ..., m-1}
The operation +,, is defined as a +,,b = (a + b) mod m.
This is addition modulo m.
The operation -, is defined as a-,, b = (a + b) mod m. This
is multiplication modulo m.
Using these operations is said to be doing arithmetic
modulo m.
Example: Find 7+,;,9 and7-;,9.
Solution: Using the definitions above:
- 7+,9=(7+9) mod1l=16mod11 =5
- 74319=(7-9) mod11=63mod11=8

17 Sept 2015 CS 320 36




Arithmetic Modulo m

The operations +,,and -, satisfy many of the same properties as
ordinary addition and multiplication.

— Closure: If aand b belong to Z,,, then a+,band a-, b
belongto Z,,.

— Associativity: If a, b, and ¢ belong to Z,,,, then
(@a+,b) +,c =a+,(b+,c)and (a -mB' ‘mC =a,(b-,e).

— Commutativity: If a and b belong to Z,,, then
a+,b =b+,a anda-,b =b-,a.

— Identity elements: The elements 0 and 1 are identity
elements for addition and multiplication modulo m,
respectively.

» Ifabelongsto Z,,thena+,0 =a anda-,1 =a.
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Arithmetic Modulo m

— Additive inverses: If a=0 belongs to Z,,, then m—a is the
additive inverse of a modulo m and 0 is its own additive inverse.
*at,(m—a) =0and 0+,0 =0
— Distributivity: If a, b, and ¢ belong to Z,,,, then
+ apbt,c)=(ay,b)+y(ay,c) and
(@+nb)mc =(@nc)+n(bmc)

Exercises 42-44 ask for proofs of these properties.

Multiplicatative inverses have not been included since they do not always
exist. For example, there is no multiplicative inverse of 2 modulo 6.
But every non zero element of Z,, will have a multiplicative inverse if
m is a prime.

(optional) Using the terminology of abstractalgebra, Z,, with +,isa
commutative group and Z,, with +,, and -, is a commutative ring.

If mis prime thenZ,, is a field.
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Representations of Integers

Let b be a positive integer greater than 1.
Then if n is a positive integer, it can be expressed
uniquely in the form:

n=abk+a,b+ ... +ab+a,

where k is a nonnegative integer,

ao, a4, ..., a, are nonnegative integers less than b,
and a, = 0.

Example for b=10:
859 = 8-102 + 5:10" + 9100
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Representations of Integers

Example for b=2 (binary expansion):
(10110), = 1-24 + 1.22 + 1.2' = (22),,

Example for b=16 (hexadecimal expansion):
(we use letters A to F to indicate numbers 10 to 15)
(3A0F),s = 3-16% + 10-162 + 0-16" + 15-16° = (14863),,
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Representations of Integers
How can we construct the base b expansion of an
integer n?
First, divide n by b to obtain a quotient q, and
remainder a,, that is,
n =bq, + a5, where 0 < a, <b.
The remainder a, is the rightmost digit in the base b
expansion of n.
Next, divide q, by b to obtain:
gy =bqgy +a;, where 0 <a, <b.

a, is the second digit from the right in the base b
expansion of n. Continue this process until you obtain
a quotient equal to zero.
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Representations of Integers

Example:
What is the base 8 expansion of (12345),, ?

First, divide 12345 by 8:
12345 = 81543 + 1

1543 =8-192+7

192 =824 +0
24=83+0
3=80+3

The result is: (12345),, = (30071)g.
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Representations of Integers

procedure base_b_expansion(n, b: positive integers)

g:=n

k:=0

whileq =0

begin
a,:=qmodb
q:=la/b]
ki=k+1

end

{the base b expansion of n is (a,_; ... @;ag), }

17 Sept 2015 €S 320 43

Addition of Integers

How do we (humans) add two integers?

111 carry
Example: 7583
+ 4932
12515
11 carry
Binary expansions: (1011),
+ (1010),
(10101),
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Addition of Integers

Leta = (a,.485.2.--813p)z, b = (b4by5...b4Dg),.

How can we algorithmically add these two binary
numbers?

First, add their rightmost bits:

ag+by=cy2 + s,

where s; is the rightmost bit in the binary expansion
of a + b, and ¢, is the carry.

Then, add the next pair of bits and the carry:
a;+b;+cy=cy2+ sy,

where s, is the next bit in the binary expansion of a +
b, and c, is the carry.
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Addition of Integers

Continue this process until you obtain c,_;.
The leading bit of the sum is s, = ¢, 4.

The result is:
a+b=(s;S,1---515)2
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Addition of Integers

Example:
Add a =(1110), and b = (1011),.

a,+by,=0+1=02+1,sothatcy=0and s, =1.
a;+by+cg=1+1+0=12+0,s0c,=1ands; =0.
a,+b,+c;=1+0+1=12+0,s0c,=1ands, =0.
az;+tby+c,=1+1+1=12+1,s0c;=1ands;=1.
s, =C3=1.

Therefore, s =a+b =(11001),.
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Addition of Integers

procedure add(a, b: positive integers)
Il a;, b; are the bits of a and b.

c:=0

forj:=0ton-1

begin
d:=[(a + bj + c)/2] // gives the high bit of sum
s;j:=g;+ b, +c—2d // gives the low bit of sum
c:=d

end

Spi=C

{the binary expansion of the sum is (s,S,.1---51S0)2}
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Multiplication of Integers

procedure multiply(a, b: positive integers)
I a;, b; are the bits of a and b.
forj:=0ton-1
begin

if b; = 1 then c; := a shifted left j places

else ¢;:= 0 // ¢;are the partial products
end
p:=0
fori:=0ton-1

p=pg .

{p is the value of the product as an integer.
Note that we haven’'t computed bits for p}
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More Algorithms

Take a look at Algorithms 4 and 5 on
pages 253, 254 and be sure you
understand them. It's important to be
able to read the code and see what it
says.

Algorithm 4 gives a way of doing the
division algorithm using repeated
subtractions instead of division.

Algorithm 5 gives a way of computing b"
using a binary representation of n
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