
1

17 Sept 2015 1

Let us get into…

Number Theory
(chapter 4)

17 Sept 2015 2

Introduction to Number Theory

Number theory is about integers and their
properties.

We will start with the basic principles of

• divisibility,
• greatest common divisors,
• least common multiples, and
• modular arithmetic

and look at some relevant algorithms.

17 Sept 2015 3

Division

If a and b are integers with a ≠ 0, we say that
a divides b if there is an integer c so that b = ac.

When a divides b we say that a is a factor of b and
that b is a multiple of a.

The notation a | b means that a divides b.

We write a X b when a does not divide b
(see book for correct symbol).

17 Sept 2015 4

Divisibility Theorems (Th. 1, p. 238)

For integers a, b, and c it is true that

• if a | b and a | c, then a | (b + c)
Example: 3 | 6 and 3 | 9, so 3 | 15.

• if a | b, then a | bc for all integers c
Example: 5 | 10, so 5 | 20, 5 | 30, 5 | 40, …

• if a | b and b | c, then a | c
Example: 4 | 8 and 8 | 24, so 4 | 24.

17 Sept 2015 5

Proof of Theorem 1, p. 238

• If a | b and a | c, then a | (b + c)

Proof: a | b means b = au for some
integer u.

b = au and c = av, where u and v are
integers.

Then b+c = au + av = a(u+v), so
a | (b + c)

17 Sept 2015 6

Proof continued.

• If a | b, then a | bc for all integers c.

proof: b = au, so bc = auc, so a | bc.

• If a | b and b | c, then a | c
proof: b = au, c = bv, so c = auv, and so
a | c.

2

17 Sept 2015 7

Corollary 1, p. 239

If a, b and c are integers such that
a | b and a | c then a | mb+nc,
where m and n are integers.

Proof:

This follows directly from Theorem 1.

17 Sept 2015 8

The Division Algorithm (Th. 2, p 239)

Let a be an integer and d a positive integer.
Then there are unique integers q and r, with
0 ≤ r < d, such that a = dq + r.

In the above equation,
• d is called the divisor,
• a is called the dividend,
• q is called the quotient, we say q = a div d, and
• r is called the remainder. We say r = a mod d

(See Def. 2, page 239)

17 Sept 2015 9

The Division Algorithm

Example:

When we divide 17 by 5, we have

17 = 5⋅3 + 2.

• 17 is the dividend,
• 5 is the divisor,
• 3 is the quotient, and
• 2 is the remainder.

17 Sept 2015 10

The Division Algorithm

Another example:

What happens when we divide -11 by 3 ?

Note that the remainder cannot be negative.

-11 = 3⋅(-4) + 1.

• -11 is the dividend,
• 3 is the divisor,
• -4 is the quotient, and
• 1 is the remainder.

17 Sept 2015 CS 320 11

The Division Algorithm

Example:

When we divide 21 by 5, we have

21 = 5⋅4 + 1.

• 21 is the dividend,
• 5 is the divisor,
• 4 is called the quotient, and
• 1 is called the remainder.

17 Sept 2015 CS 320 12

Proof of the Division Algorithm

Given integers a, d>0, ∃ unique q,r
such that a = dq + r, and 0 ≤ r < d.

Proof. To see this consider the set of
all multiples of d on the number line.
Each integer a can be written
uniquely as dq +r, where dq is a, or
the multiple of d to the immediate left
of a.

3

17 Sept 2015 CS 320 13

Clinching the uniqueness

Suppose a = dq1 + r1, 0 ≤ r1 < d, and
a = dq2 + r2, 0 ≤ r2 < d.

Then subtracting we get
0 = d(q1 - q2) + (r1 – r2)

Then d | (r1 – r2) and –d < (r1 – r2) < d,
so (r1 – r2) = 0
and hence q1 = q2.

This proves uniqueness of q and r.

17 Sept 2015 CS 320 14

Primes

A positive integer p greater than 1 is called prime if
the only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not
prime is called composite.

The Fundamental Theorem of Arithmetic:
(p. 258)
Every positive integer bigger than 1 can be written
uniquely as the product of primes, where the prime
factors are written in order of increasing size.
(proof later…)

17 Sept 2015 CS 320 15

Primes

Examples:

3·5

48 =

17 =

100 =

512 =

515 =

28 =

15 =

2·2·2·2·3 = 24·3

17

2·2·5·5 = 22·52

2·2·2·2·2·2·2·2·2 = 29

5·103

2·2·7 = 22·7

17 Sept 2015 CS 320 16

Theorem 2, p. 258

If n is a composite integer then n has a
prime factor ≤ √n. (≤ sqrt(n))

Proof: If n is composite then n = uv,
where one of u and v must be
≤ √n.

This factor ≤ √n then must have a prime
factor also ≤ √n.

17 Sept 2015 CS 320 17

Infinitely many primes…

Theorem: There are infinitely many
primes.

Proof: Suppose there are only n primes,
p1, p2, …, pn.

Then u = p1 p2 …pn + 1 has a prime divisor but it
can’t be one of p1, p2, …, pn.

17 Sept 2015 CS 320 18

Greatest Common Divisors
Let a and b be integers, not both zero.
The largest integer d such that d | a and d | b is
called the greatest common divisor of a and b.
The greatest common divisor of a and b is denoted
by gcd(a, b).

Example 1: What is gcd(48, 72) ?
The positive common divisors of 48 and 72 are
1, 2, 3, 4, 6, 8, 12, 16, and 24, so gcd(48, 72) = 24.

Example 2: What is gcd(19, 72) ?
The only positive common divisor of 19 and 72 is
1, so gcd(19, 72) = 1.

4

17 Sept 2015 CS 320 19

Greatest Common Divisors

Using prime factorizations:

a = p1
a1 p2

a2 … pn
an , b = p1

b1 p2
b2 … pn

bn ,
where p1 < p2 < … < pn and ai, bi ∈ N for 1 ≤ i ≤ n

gcd(a, b) = p1
min(a1, b1) p2

min(a2, b2) … pn
min(an, bn)

Example:

a = 60 = 22 31 51

b = 54 = 21 33 50

gcd(a, b) = 21 31 50 = 6

17 Sept 2015 CS 320 20

Relatively Prime Integers
Definition:

Two integers a and b are relatively prime if
gcd(a, b) = 1.
This means that no prime divides both a and b.

Examples:

Are 15 and 28 relatively prime?
Yes, gcd(15, 28) = 1.
Are 55 and 28 relatively prime?
Yes, gcd(55, 28) = 1.
Are 35 and 28 relatively prime?
No, gcd(35, 28) = 7.

17 Sept 2015 CS 320 21

Relatively Prime Integers

Definition:

The integers a1, a2, …, an are pairwise relatively

prime if gcd(ai, aj) = 1 whenever 1 ≤ i < j ≤ n.

Examples:

Are 15, 17, and 27 pairwise relatively prime?
No, because gcd(15, 27) = 3.

Are 15, 17, and 28 pairwise relatively prime?
Yes, because gcd(15, 17) = 1, gcd(15, 28) = 1 and
gcd(17, 28) = 1.

17 Sept 2015 CS 320 22

Least Common Multiples
Definition:

The least common multiple of the positive integers
a and b is the smallest positive integer that is
divisible by both a and b.

We denote the least common multiple of a and b by
lcm(a, b).

Examples:

lcm(3, 7) = 21

lcm(4, 6) = 12

lcm(5, 10) = 10

17 Sept 2015 CS 320 23

Least Common Multiples

Using prime factorizations:

a = p1
a1 p2

a2 … pn
an , b = p1

b1 p2
b2 … pn

bn ,
where p1 < p2 < … < pn and ai, bi ∈ N for 1 ≤ i ≤ n

lcm(a, b) = p1
max(a1, b1) p2

max(a2, b2) … pn
max(an, bn)

Example:

a = 60 = 22 31 51

b = 54 = 21 33 50

lcm(a, b) = 22 33 51 = 4⋅27⋅5 = 540

17 Sept 2015 CS 320 24

GCD and LCM

a = 60 = 22 31 51

b = 54 = 21 33 50

lcm(a, b) = 22 33 51 = 540

gcd(a, b) = 21 31 50 = 6

Theorem: a⋅b = gcd(a,b)⋅lcm(a,b)

5

17 Sept 2015 CS 320 25

Th. a⋅b = gcd(a,b)⋅lcm(a,b)

Proof. Express a and b as products of
primes.

If a prime p occurs with power i in a and
power j in b, and i <= j then

p occurs with power i in gcd(a,b) and
power j in lcm(a,b), thus with power i+j
in the products a ⋅ b and gcd(a,b) ⋅
lcm(a,b)

This gives our theorem, since it holds for
each such prime p.

17 Sept 2015 CS 320 26

Modular Arithmetic

Let a be an integer and m be a positive integer.
We denote by a mod m the remainder when a is
divided by m.

Examples:

9 mod 4 = 1

9 mod 3 = 0

9 mod 10 = 9

-13 mod 4 = 3

17 Sept 2015 CS 320 27

Congruences

Let a and b be integers and m be a positive integer.
We say that a is congruent to b modulo m if
m divides a – b.

We use the notation a ≡ b (mod m) to indicate that a
is congruent to b modulo m.

In other words (Th. 3, page 241):
a ≡ b (mod m) if and only if a mod m = b mod m.

17 Sept 2015 CS 320 28

Congruences
Examples:

Is it true that 46 ≡ 68 (mod 11) ?
Yes, because 11 | (46 – 68).
Is it true that 46 ≡ 68 (mod 22)?
Yes, because 22 | (46 – 68).
For which integers z is it true that z ≡ 12 (mod 10)?
It is true for any z∈{…,-28, -18, -8, 2, 12, 22, 32, …}

Theorem (Th. 4, p. 241): Let m be a positive integer.
The integers a and b are congruent modulo m if and
only if there is an integer k such that a = b + km.

17 Sept 2015 CS 320 29

Congruences

Theorem (Th. 5, p. 242): Let m be a positive integer.
If a ≡ b (mod m) and c ≡ d (mod m), then
a + c ≡ b + d (mod m) and ac ≡ bd (mod m).
Proof:
We know that a ≡ b (mod m) and c ≡ d (mod m)
implies that there are integers s and t with
b = a + sm and d = c + tm.
Therefore,
b + d = (a + sm) + (c + tm) = (a + c) + m(s + t) and
bd = (a + sm)(c + tm) = ac + m(at + cs + stm).
Hence, a + c ≡ b + d (mod m) and ac ≡ bd (mod m).

17 Sept 2015 CS 320 30

A useful theorem on gcd

Theorem: if a = bq + r (a,b,q,r, are
integers) then gcd(a,b) = gcd(b,r)

Proof: An integer x divides both a and b iff it divides
both b and r. (Do you see why? Do you see the
symmetry in the roles of a and r?)

Hence (a,b) and (b,r) have the same set of common
divisors.

Hence gcd(a,b) = gcd(b,r). This is Lemma 1, p. 268.

This theorem is the basis of the Euclidean Algorithm.

6

17 Sept 2015 CS 320 31

The Euclidean Algorithm
The Euclidean Algorithm finds the greatest
common divisor of two integers a and b.
For example, if we want to find gcd(287, 91),
we divide 287 (the larger number) by 91 (the
smaller one):
287 = 91⋅3 + 14

Now, applying our previous Theorem, we see
that
gcd(287, 91) = gcd(91, 14)

We have reduced the original problem to a
smaller one.

17 Sept 2015 CS 320 32

The Euclidean Algorithm
gcd(287, 91) = gcd(91, 14).

We now divide 14 into 91:
91 = 14 · 6 + 7

So we have
gcd(91, 14) = gcd(14,7).

We recognize that the answer is 7, but for the
algorithm we have to continue, divide 7 into 14.

14 = 7 · 2 + 0, so 7 | 14.
Thus 7 = gcd(14, 7) = gcd(91, 14) = gcd(287, 91)

17 Sept 2015 CS 320 33

The Euclidean Algorithm

To summarize:

287 = 91⋅3 + 14, so
gcd(287, 91) = gcd(91, 14)

91 = 14⋅6 + 7,
gcd(91, 14) = gcd(14, 7)

14 = 7⋅2 + 0,
7 | 14, so gcd(14, 7) = 7

Thus gcd(287, 91) = 7.

17 Sept 2015 CS 320 34

The Euclidean Algorithm

The Euclidean Algorithm finds the greatest

common divisor of two integers a and b.
1. If b < a, divide b into a, get remainder r1

a = bq1+r1, 0 ≤ r1 < b. If r1=0 we are done
Now gcd(a,b) = gcd(b,r1). Repeat until remainder is 0.

2. b = r1q2 + r2, 0 ≤ r2 < r1. If r2=0 we are done
Now gcd(b,r1) = gcd(r1,r2).

3. r1 = r2q3 + r3, 0 ≤ r3 < r2
Now gcd(r1,r2) = gcd(r2,r3).

4. Since the remainders are decreasing, we’ll hit 0 after
finitely many (very few, actually) steps.

5. When rn = rn+1qn+1 + 0, we have
rn+1 = gcd(rn, rn+1) = gcd (rn, rn-1) = … = gcd(a,b)

17 Sept 2015 CS 320 35

The Euclidean Algorithm

In pseudocode, the algorithm can be implemented
as follows:

procedure gcd(a, b: positive integers)
x := a
y := b
while y ≠ 0
begin

r := x mod y
x := y
y := r

end
{x is gcd(a, b)}

Arithmetic Modulo m

Definitions: Let Zm be the set of nonnegative integers
less than m:
{0,1, …., m−1}

The operation +m is defined as a +m b = (a + b) mod m.
This is addition modulo m.

The operation ∙m is defined as a ∙m b = (a + b) mod m. This
is multiplication modulo m.

Using these operations is said to be doing arithmetic
modulo m.

Example: Find 7 +11 9 and 7 ∙11 9.
Solution: Using the definitions above:

– 7 +11 9 = (7 + 9) mod 11 = 16 mod 11 = 5

– 7 ∙11 9 = (7 ∙ 9) mod 11 = 63 mod 11 = 8

17 Sept 2015 CS 320 36

7

Arithmetic Modulo m

The operations +m and ∙m satisfy many of the same properties as
ordinary addition and multiplication.
– Closure: If a and b belong to Zm , then a +m b and a ∙m b

belong to Zm .
– Associativity: If a, b, and c belong to Zm , then

(a +m b) +m c = a +m (b +m c) and (a ∙m b) ∙m c = a ∙m (b ∙m c).
– Commutativity: If a and b belong to Zm , then

a +m b = b +m a and a ∙m b = b ∙m a.
– Identity elements: The elements 0 and 1 are identity

elements for addition and multiplication modulo m,
respectively.

• If a belongs to Zm , then a +m 0 = a and a ∙m 1 = a.

17 Sept 2015 CS 320 37

Arithmetic Modulo m
– Additive inverses: If a≠ 0 belongs to Zm , then m− a is the

additive inverse of a modulo m and 0 is its own additive inverse.
• a +m (m− a) = 0 and 0 +m 0 = 0

– Distributivity: If a, b, and c belong to Zm , then
• a ∙m (b +m c) = (a ∙m b) +m (a ∙m c) and

(a +m b) ∙m c = (a ∙m c) +m (b ∙m c).
Exercises 42-44 ask for proofs of these properties.

Multiplicatative inverses have not been included since they do not always
exist. For example, there is no multiplicative inverse of 2 modulo 6.
But every non zero element of Zm will have a multiplicative inverse if
m is a prime.

(optional) Using the terminology of abstract algebra, Zm with +m is a
commutative group and Zm with +m and ∙m is a commutative ring.

If m is prime then Zm is a field.

17 Sept 2015 CS 320 38

17 Sept 2015 CS 320 39

Representations of Integers

Let b be a positive integer greater than 1.
Then if n is a positive integer, it can be expressed
uniquely in the form:

n = akbk + ak-1bk-1 + … + a1b + a0,

where k is a nonnegative integer,
a0, a1, …, ak are nonnegative integers less than b,
and ak ≠ 0.

Example for b=10:

859 = 8⋅102 + 5⋅101 + 9⋅100

17 Sept 2015 CS 320 40

Representations of Integers

Example for b=2 (binary expansion):

(10110)2 = 1⋅24 + 1⋅22 + 1⋅21 = (22)10

Example for b=16 (hexadecimal expansion):

(we use letters A to F to indicate numbers 10 to 15)

(3A0F)16 = 3⋅163 + 10⋅162 + 0⋅161 + 15⋅160 = (14863)10

17 Sept 2015 CS 320 41

Representations of Integers
How can we construct the base b expansion of an
integer n?

First, divide n by b to obtain a quotient q0 and
remainder a0, that is,

n = bq0 + a0, where 0 ≤ a0 < b.

The remainder a0 is the rightmost digit in the base b
expansion of n.

Next, divide q0 by b to obtain:

q0 = bq1 + a1, where 0 ≤ a1 < b.

a1 is the second digit from the right in the base b
expansion of n. Continue this process until you obtain
a quotient equal to zero.

17 Sept 2015 CS 320 42

Representations of Integers

Example:

What is the base 8 expansion of (12345)10 ?

First, divide 12345 by 8:
12345 = 8⋅1543 + 1

1543 = 8⋅192 + 7
192 = 8⋅24 + 0
24 = 8⋅3 + 0
3 = 8⋅0 + 3

The result is: (12345)10 = (30071)8.

8

17 Sept 2015 CS 320 43

Representations of Integers

procedure base_b_expansion(n, b: positive integers)
q := n
k := 0
while q ≠ 0
begin

ak := q mod b
q := q/b
k := k + 1

end

{the base b expansion of n is (ak-1 … a1a0)b }

17 Sept 2015 CS 320 44

Addition of Integers

How do we (humans) add two integers?

Example: 7583
+ 4932

51521

111 carry

Binary expansions: (1011)2

+ (1010)2

10

carry1

10

1

1()2

17 Sept 2015 CS 320 45

Addition of Integers

Let a = (an-1an-2…a1a0)2, b = (bn-1bn-2…b1b0)2.

How can we algorithmically add these two binary
numbers?
First, add their rightmost bits:
a0 + b0 = c0⋅2 + s0,
where s0 is the rightmost bit in the binary expansion
of a + b, and c0 is the carry.

Then, add the next pair of bits and the carry:

a1 + b1 + c0 = c1⋅2 + s1,
where s1 is the next bit in the binary expansion of a +
b, and c1 is the carry.

17 Sept 2015 CS 320 46

Addition of Integers

Continue this process until you obtain cn-1.

The leading bit of the sum is sn = cn-1.

The result is:

a + b = (snsn-1…s1s0)2

17 Sept 2015 CS 320 47

Addition of Integers

Example:

Add a = (1110)2 and b = (1011)2.

a0 + b0 = 0 + 1 = 0⋅2 + 1, so that c0 = 0 and s0 = 1.

a1 + b1 + c0 = 1 + 1 + 0 = 1⋅2 + 0, so c1 = 1 and s1 = 0.

a2 + b2 + c1 = 1 + 0 + 1 = 1⋅2 + 0, so c2 = 1 and s2 = 0.

a3 + b3 + c2 = 1 + 1 + 1 = 1⋅2 + 1, so c3 = 1 and s3 = 1.

s4 = c3 = 1.

Therefore, s = a + b = (11001)2.

17 Sept 2015 CS 320 48

Addition of Integers

procedure add(a, b: positive integers)
// ai, bi are the bits of a and b.

c := 0
for j := 0 to n-1
begin

d := (aj + bj + c)/2 // gives the high bit of sum
sj := aj + bj + c – 2d // gives the low bit of sum
c := d

end
sn := c
{the binary expansion of the sum is (snsn-1…s1s0)2}

9

17 Sept 2015 CS 320 49

Multiplication of Integers

procedure multiply(a, b: positive integers)
// ai, bi are the bits of a and b.
for j := 0 to n-1
begin

if bj = 1 then cj := a shifted left j places
else cj := 0 // cj are the partial products

end
p := 0
for i := 0 to n-1

p := p + cj
{p is the value of the product as an integer.
Note that we haven’t computed bits for p}

17 Sept 2015 CS 320 50

More Algorithms

Take a look at Algorithms 4 and 5 on
pages 253, 254 and be sure you
understand them. It’s important to be
able to read the code and see what it
says.

Algorithm 4 gives a way of doing the
division algorithm using repeated
subtractions instead of division.

Algorithm 5 gives a way of computing bn

using a binary representation of n

