
1

CS 320

Applied Discrete Mathematics

Fall 2015 Colin Godfrey

8 Sept 2015 1

Course info

The course web page will be
www.cs.umb.edu/cs320, I hope.

I can be reached by email at
colin.godfrey@umb.edu.

I’ll have office hours Tu after class, M-3-607

The Powerpoint slides are originally descended
from ones from Marc Pomplun, from CS 320,
Spring 2003, with much subsequent modification.

Slides will be available on the course web page.
The pdf version will be handouts, 6 slides per
page.

8 Sept 2015 2

Why Care about Discrete Math?

“Discrete” means separate things, as opposed

to continuous things, as in calculus.

“Discrete” is quite different from “discreet”.

• Digital computers are based on discrete

“atoms”(bits).

Both a computer’s

– structure (circuits) and

– operations (execution of algorithms)

can be described by discrete math.

8 Sept 2015 3

What we shall cover

• Logic and Set Theory

• Functions and Sequences

• Algorithms

• Applications of Number Theory

• Mathematical Reasoning

• Counting

• Probability Theory

• Relations and Equivalence Relations

• Graphs and Trees

• Boolean Algebra

8 Sept 2015 4

Mathematical Appetizers

Useful tools for discrete mathematics:

Logic

Set Theory

Functions

Sequences

8 Sept 2015 5

Logic

• Crucial for reasoning in mathematics and in

writing software.

• Used for designing electronic circuitry

• Logic is a system based on propositions.

• A proposition is a statement: something that

is either true or false (not both).

• We say that the truth value of a proposition is

either true (T) or false (F).

• T and F correspond to 1 and 0 in digital circuits

8 Sept 2015 6

2

Different Kinds of Logic

There are various kinds of multiple-valued

logics, where you can have True, False,

and some other things, perhaps

representing “unknown” or “maybe”.

In this course we shall stick to classical

logic, where we have only T and F

values.

8 Sept 2015 7

Let’s Talk About Logic

Logic is a system based on propositions.

A proposition is a statement that is either true or

false (not both).

We say that the truth value of a proposition is

either true (T) or false (F).

T and F correspond to 1 and 0 in digital circuits

8 Sept 2015 8

The Statement/Proposition Game

“Elephants are bigger than mice.”

Is this a proposition?

yes

What is the truth value of the proposition?

true

8 Sept 2015 9

The Statement/Proposition Game

“520 < 111”

Is this a proposition?

yes

What is the truth value of the

proposition?

false

8 Sept 2015 10

The Statement/Proposition Game

“y > 5”

Is this a proposition?

no

Its truth value depends on the value of y,

but this value is not specified.

We call this type of statement a

propositional function or open sentence.

8 Sept 2015 11

The Statement/Proposition Game

“Today is September 8 and 99 < 5.”

Is this a proposition?

yes

What is the truth value of the

proposition?

false
8 Sept 2015 12

3

The Statement/Proposition Game

“Please do not fall asleep.”

Is this a proposition?

no

It’s a request.

8 Sept 2015 13

The Statement/Proposition Game

“If all elephants are red,
they can hide in cherry trees.”

Is this a proposition?

yes

What is the truth value of the proposition?

This is a tough question, and may have a
different meaning in ordinary life than it would
have in logic.

8 Sept 2015 14

The Statement/Proposition Game

“x < y if and only if y > x.”

Is this a proposition?

yes

What is the truth value of the proposition?

true

… because its truth value does not depend on
specific values of x and y.

It depends on our understanding of the context
– that x and y are numbers, for example

8 Sept 2015 15

Combining Propositions

As we have seen in the previous examples, one
or more propositions can be combined to
form a single compound proposition.

We formalize this by denoting propositions by
letters such as p, q, r, s, and introducing
several logical operators.

The reason we do this is to abstract from the
particular to a general pattern, true for all
propositions.

We want to understand the general pattern.

8 Sept 2015 16

Logical Operators (Connectives)

We will examine the following logical operators:
• Negation (NOT)
• Conjunction (AND)
• Disjunction (OR)
• Exclusive or (XOR)
• Implication (if – then)
• Biconditional (if and only if)

Truth tables can be used to show how these operators
can combine propositions to form compound
propositions.

These operations can be performed bitwise on bit
strings, for example in C, C++, or java.

8 Sept 2015 17

Negation (NOT)

Negation

Unary Operator, Symbol:

￢

P ￢P

True False

False True

8 Sept 2015 18

4

Conjunction (AND)

Binary Operator, Symbol: ∧

P Q P∧Q

T T T

T F F

F T F

F F F

8 Sept 2015 19

Disjunction (OR)

Binary Operator, Symbol: ∨

P Q P∨Q

T T T

T F T

F T T

F F F

8 Sept 2015 20

Exclusive Or (XOR)

Binary Operator, Symbol: ⊕

P Q P ⊕ Q

T T F

T F T

F T T

F F F

8 Sept 2015 21

Implication (if – then)

Binary Operator, Symbol: →

If it is raining then the ground is wet.

P Q P → Q

T T T

T F F

F T T

F F T
8 Sept 2015 22

Biconditional (if and only if)

Binary Operator, Symbol:↔

P Q P ↔ Q

T T T

T F F

F T F

F F T

8 Sept 2015 23

Statements and Operations

Statements and operators can be

combined in any way to form new

statements.

P Q P∧Q ¬(P∧Q) (¬P) ∨(¬Q)

T T T F F

T F F T T

F T F T T

F F F T T

8 Sept 2015 24

5

Equivalent Statements

P Q ¬(P∧Q) (¬P) ∨(¬Q) (¬(P∧Q))↔((¬P) ∨(¬Q))

T T F F T

T F T T T

F T T T T

F F T T T

8 Sept 2015 25

The statements ￢(P∧Q) and (￢P)∨(￢Q) are logically

equivalent, because ￢(P∧Q) ↔ (￢P)∨(￢Q) is always

true.

Tautologies and

Contradictions

A tautology is a statement that is

always true.

Examples:

• R∨(￢R)

• ￢(P∧Q) → (￢P)∨(￢Q)

If S →T is a tautology, we write S ⇒T.

If S ↔T is a tautology, we write S ⇔T.

8 Sept 2015 26

Logic Circuits

(Studied in depth in Chapter 12)
Electronic circuits; each input/output signal can be viewed as a 0 or 1.

– 0 represents False

– 1 represents True

Complicated circuits are constructed from three basic circuits called gates.

– The inverter (NOT gate)takes an input bit and produces the negation of that bit.

– The OR gate takes two input bits and produces the value equivalent to the disjunction

of the two bits.

– The AND gate takes two input bits and produces the value equivalent to the

conjunction of the two bits.

More complicated digital circuits can be constructed by combining these basic

circuits to produce the desired output given the input signals by building a circuit

for each piece of the output expression and then combining them. For example:

8 Sept 2015 27

Tautologies and

Contradictions

A contradiction is a statement that is
always false.

Examples:

• R∧(￢R)

• ￢(￢(P∧Q) ↔ (￢P)∨(￢Q))

The negation of any tautology is a contradiction,
and

the negation of any contradiction is a tautology.

8 Sept 2015 28

Exercises

We already know the following tautology:
￢(P∧Q) ⇔ (￢P)∨(￢Q)

Nice home exercise: Show that
￢(P∨Q) ⇔ (￢P)∧(￢Q).

These two tautologies are known as De Morgan’s laws.

Table 6 in Section 1.3 shows many useful laws.

The first thirty or so exercises in Section 1.3 may help
you get used to propositions and operators.

8 Sept 2015 29

Equivalences

When an iff statement is a tautology:

￢(P∧Q) ⇔ (￢P)∨(￢Q)

we can write it as an equivalence,

meaning the two statements are

logically equivalent:

For any truth values of the variables the

statements are both true or both false

￢(P∧Q) ≡ (￢P)∨(￢Q)

8 Sept 2015 30

6

Important Equivalences

An equivalence that is important for you to
think about and understand is:
P → Q ≡ ￢P∨Q

It follows from this that:
￢(P → Q) ≡ P ∧￢Q

There are many other good ones on
page 28 that you should try to
understand intuitively. e.g.
(P → Q) ∧(P → R) ≡ P → (Q ∧R)

8 Sept 2015 31

Propositional Functions

Propositional function (open sentence):

statement involving one or more variables,

e.g.: x-3 > 5.

Let us call this propositional function P(x), where P

is the predicate and x is the variable.

8 Sept 2015 32

What is the truth value of P(2) ? false

What is the truth value of P(8) ?

What is the truth value of P(9) ?

false

true

Propositional Functions

Let us consider the propositional function

Q(x, y, z) defined as:

x + y = z.

Here, Q is the predicate and x, y, and z are the

variables.

8 Sept 2015 33

What is the truth value of Q(2, 3, 5) ? true

What is the truth value of Q(0, 1, 2) ?

What is the truth value of Q(9, -9, 0) ?

false

true

Universal Quantification

Let P(x) be a propositional function.

Universally quantified sentence:

For all x in the universe of discourse P(x) is true.

Using the universal quantifier ∀:

∀x P(x) “for all x P(x)” or “for every x P(x)”

(Note: ∀x P(x) is either true or false, so it is a

proposition, not a propositional function.)

8 Sept 2015 34

Universal Quantification

Example:

S(x): x is a UMB student.

G(x): x is a genius.

What does ∀x (S(x) → G(x)) mean ?

“If x is a UMB student, then x is a genius.”

or

“All UMB students are geniuses.”

8 Sept 2015 35

Existential Quantification

Existentially quantified sentence:

There exists an x in the universe of discourse for
which P(x) is true.

Using the existential quantifier ∃:

∃x P(x) “There is an x such that P(x).”

“There is at least one x such that P(x).”

(Note: ∃x P(x) is either true or false, so it is a
proposition, but not a propositional function.)

8 Sept 2015 36

7

Existential Quantification

Example:

G(x): x is a genius.

P(x): x is a UMB professor.

What does ∃x (P(x) ∧ G(x)) mean ?

“There is an x such that x is a UMB professor and x
is a genius.”

or

“At least one UMB professor is a genius.”

8 Sept 2015 37

Quantification

Another example:

Let the universe of discourse be the real numbers.

What does ∀x∃y (x + y = 320) mean ?

“For every x there exists a y such that x + y = 320.”

8 Sept 2015 38

Is it true?

Is it true for the natural numbers?

yes

no

Disproof by Counterexample

A counterexample to ∀x P(x) is an object c so that

P(c) is false.

Statements such as ∀x (P(x) → Q(x)) can be

disproved by simply providing a counterexample.

8 Sept 2015 39

Statement: “All birds can fly.”

Disproved by counterexample: Penguin.

Negation

¬(∀x P(x)) is logically equivalent to ∃x (¬P(x)).

¬(∃x P(x)) is logically equivalent to ∀x (¬P(x)).

See Table 2 in Section 1.4.

I recommend exercises 5, 7, 9 in Section 1.4,

for starters.

8 Sept 2015 40

Precedence of Logical Operators

Operator precedence

¬ 1

∧ 2

∨ 3

→ 4

↔ 5

8 Sept 2015 41

Operator Precedence

p ∨ q ∧ r means

p ∨ (q ∧ r)

p → q ∨ r means

p → (q ∨ r)

p → q ↔ q → p means

(p → q) ↔ (q → p)

8 Sept 2015 42

8

8 Sept 2015 CS 320 43

Let’s proceed to…

Mathematical Reasoning

Sections 1.6, 1.7

8 Sept 2015 CS 320 44

Mathematical Reasoning

We need mathematical reasoning to

• determine whether a mathematical argument is

correct or incorrect and

• construct mathematical arguments.

Mathematical reasoning is not only important for

conducting proofs and program verification, but

also for artificial intelligence systems (drawing

inferences).

8 Sept 2015 CS 320 45

Terminology

An axiom is a basic assumption about mathematical

structures that needs no proof.

We can use a proof to demonstrate that a particular

statement is true. A proof consists of a sequence of

statements that form an argument.

The steps that connect the statements in such a

sequence are the rules of inference.

Cases of incorrect reasoning are called fallacies.

A theorem is a statement that can be shown to be

true.

8 Sept 2015 CS 320 46

Terminology

A lemma is a simple theorem used as an

intermediate result in the proof of another theorem.

A corollary is a proposition that follows directly from

a theorem that has been proved.

A conjecture is a statement whose truth value is

unknown. Once it is proven, it becomes a theorem.

8 Sept 2015 CS 320 47

Rules of Inference

Rules of inference provide the justification of the

steps used in a proof.

One important rule is called modus ponens or the

law of detachment. It is based on the tautology

(p∧(p→q)) → q. We write it in the following way:

p

p → q

∴ q

The two hypotheses p and p → q are

written in a column, and the conclusion

below a bar, where ∴ means “therefore”.

8 Sept 2015 CS 320 48

Rules of Inference

The general form of a rule of inference is:

p1

p2
.
.
.
pn

∴ q

The rule states that if p1 and p2 and … and

pn are all true, then q is true as well.

The following rules of inference can be

used in any mathematical argument and do

not require any proof.

9

8 Sept 2015 CS 320 49

Rules of Inference

p

∴ p∨q

Addition

p∧q

∴ p

Simplification

p

q

∴ p∧q

Conjunction

¬q

p→q

∴ ¬p

Modus tollens

p→q

q→r

∴ p→r

Hypothetical

syllogism

p∨q

¬p

∴ q

Disjunctive

syllogism

8 Sept 2015 CS 320 50

Arguments

Just like a rule of inference, an argument consists of

one or more hypotheses and a conclusion.

We say that an argument is valid, if whenever all its

hypotheses are true, its conclusion is also true.

However, if any hypothesis is false, even a valid

argument can lead to an incorrect conclusion.

8 Sept 2015 CS 320 51

Arguments

Example:

“If 101 is divisible by 3, then 1012 is divisible by 9.
101 is divisible by 3. Consequently, 1012 is divisible
by 9.”

Although the argument is valid, its conclusion is
incorrect, because one of the hypotheses is false
(“101 is divisible by 3.”).

If in the above argument we replace 101 with 102,
we could correctly conclude that 1022 is divisible by
9.

8 Sept 2015 CS 320 52

Arguments
Which rule of inference was used in the last

argument?

p: “101 is divisible by 3.”

q: “1012 is divisible by 9.”

p

p→q

∴ q

Modus

ponens

Unfortunately, one of the hypotheses (p) is false.

Therefore, the conclusion q is incorrect.

8 Sept 2015 CS 320 53

Arguments

Another example:

“If it rains today, then we will not have a barbeque

today. If we do not have a barbeque today, then we

will have a barbeque tomorrow.

Therefore, if it rains today, then we will have a

barbeque tomorrow.”

This is a valid argument: If its hypotheses are true,

then its conclusion is also true.

8 Sept 2015 CS 320 54

Arguments

Let us formalize the previous argument:

p: “It is raining today.”

q: “We will not have a barbecue today.”

r: “We will have a barbecue tomorrow.”

So the argument is of the following form:

p→q

q→r

∴ p→r

Hypothetical

syllogism

10

8 Sept 2015 CS 320 55

Arguments

Another example:

Gary is either intelligent or a good actor.

If Gary is intelligent, then he can count

from 1 to 10.

Gary can only count from 1 to 2.

Therefore, Gary is a good actor.

i: “Gary is intelligent.”

a: “Gary is a good actor.”

c: “Gary can count from 1 to 10.”

8 Sept 2015 CS 320 56

Arguments

i: “Gary is intelligent.”

a: “Gary is a good actor.”

c: “Gary can count from 1 to 10.”

Step 1: ¬c Hypothesis

Step 2: i → c Hypothesis

Step 3: ¬i Modus Tollens Steps 1 & 2

Step 4: a ∨ i Hypothesis

Step 5: a Disjunctive Syllogism

Steps 3 & 4

Conclusion: a (“Gary is a good actor.”)

8 Sept 2015 CS 320 57

Arguments

Yet another example:

If you listened to me, you will have passed CS 320.

You passed CS 320.

Therefore, you have listened to me.

Is this argument valid?

No, it assumes ((p→q) ∧ q) → p.

This statement is not a tautology. It is false if p is

false and q is true.

8 Sept 2015 CS 320 58

Rules of Inference for Quantified Statements

∀x P(x)

∴ P(c) if c∈U

Universal

instantiation

P(c) for an arbitrary c∈U

∴ ∀x P(x)

Universal

generalization

∃x P(x)

∴ P(c) for some element c∈U

Existential

instantiation

P(c) for some element c∈U

∴ ∃x P(x)

Existential

generalization

8 Sept 2015 CS 320 59

Rules of Inference for Quantified Statements

Example:

Every UMB student is a genius.

George is a UMB student.

Therefore, George is a genius.

U(x): “x is a UMB student.”

G(x): “x is a genius.”

8 Sept 2015 CS 320 60

Rules of Inference for Quantified Statements

The following steps are used in the argument:

Step 1: ∀x (U(x) → G(x)) Hypothesis

Step 2: U(George) → G(George) Univ. instantiation

using Step 1

∀x P(x)

∴ P(c) if c∈U

Universal

instantiation

Step 3: U(George) Hypothesis

Step 4: G(George) Modus ponens

using Steps 2 & 3

