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CS 320

Applied Discrete Mathematics

Fall 2015 Colin Godfrey
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Course info

The course web page will be 
www.cs.umb.edu/cs320, I hope.

I can be reached by email at 
colin.godfrey@umb.edu.

I’ll have office hours Tu after class, M-3-607

The Powerpoint slides are originally descended 
from ones from Marc Pomplun, from CS 320, 
Spring 2003, with much subsequent modification.

Slides will be available on the course web page.  
The pdf version will be handouts, 6 slides per 
page.
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Why Care about Discrete Math?

“Discrete” means separate things, as opposed 

to continuous things, as in calculus.

“Discrete” is quite different from “discreet”.

• Digital computers are based on discrete 

“atoms”(bits).

Both a computer’s

– structure (circuits) and

– operations (execution of algorithms)

can be described by discrete math.
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What we shall cover

• Logic and Set Theory

• Functions and Sequences

• Algorithms

• Applications of Number Theory

• Mathematical Reasoning

• Counting

• Probability Theory

• Relations and Equivalence Relations

• Graphs and Trees

• Boolean Algebra
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Mathematical Appetizers

Useful tools for discrete mathematics:

Logic

Set Theory

Functions

Sequences
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Logic

• Crucial for reasoning in mathematics and in 

writing software.

• Used for designing electronic circuitry

• Logic is a system based on propositions.

• A proposition is a statement: something that 

is either true or false (not both).

• We say that the truth value of a proposition is 

either true (T) or false (F).

• T and F correspond to 1 and 0 in digital circuits
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Different Kinds of Logic

There are various kinds of multiple-valued 

logics, where you can have True, False, 

and some other things, perhaps 

representing “unknown” or “maybe”.

In this course we shall stick to classical 

logic, where we have only T and F 

values.
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Let’s Talk About Logic

Logic is a system based on propositions.

A proposition is a statement that is either true or 

false (not both).

We say that the truth value of a proposition is 

either true (T) or false (F).

T and F correspond to 1 and 0 in digital circuits
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The Statement/Proposition Game

“Elephants are bigger than mice.”

Is this a proposition? 

yes

What is the truth value of the proposition?

true
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The Statement/Proposition Game

“520 < 111”

Is this a proposition? 

yes

What is the truth value of the 

proposition? 

false
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The Statement/Proposition Game

“y > 5”

Is this a proposition? 

no

Its truth value depends on the value of y, 

but this value is not specified.

We call this type of statement a 

propositional function or open sentence.
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The Statement/Proposition Game

“Today is September 8 and 99 < 5.”

Is this a proposition? 

yes

What is the truth value of the 

proposition?

false
8 Sept 2015 12



3

The Statement/Proposition Game

“Please do not fall asleep.”

Is this a proposition? 

no

It’s a request.
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The Statement/Proposition Game

“If all elephants are red,
they can hide in cherry trees.”

Is this a proposition? 

yes

What is the truth value of the proposition? 

This is a tough question, and may have a 
different meaning in ordinary life than it would 
have in logic.
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The Statement/Proposition Game

“x < y if and only if y > x.”

Is this a proposition? 

yes

What is the truth value of the proposition? 

true

… because its truth value does not depend on 
specific values of x and y.

It depends on our understanding of the context 
– that x and y are numbers, for example
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Combining Propositions

As we have seen in the previous examples, one 
or more propositions can be combined to 
form a single compound proposition.

We formalize this by denoting propositions by 
letters such as p, q, r, s, and introducing 
several logical operators.

The reason we do this is to abstract from the 
particular to a general pattern, true for all 
propositions.  

We want to understand the general pattern.
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Logical Operators (Connectives)

We will examine the following logical operators:
• Negation (NOT)
• Conjunction (AND)
• Disjunction (OR)
• Exclusive or (XOR)
• Implication (if – then)
• Biconditional (if and only if)

Truth tables can be used to show how these operators 
can combine propositions to form compound 
propositions.

These operations can be performed bitwise on bit 
strings, for example in C, C++, or java.  
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Negation (NOT)

Negation

Unary Operator, Symbol: 

￢

P ￢P

True False

False True
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Conjunction (AND)

Binary Operator, Symbol: ∧

P Q P∧Q

T T T

T F F

F T F

F F F
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Disjunction (OR)

Binary Operator, Symbol: ∨

P Q P∨Q

T T T

T F T

F T T

F F F
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Exclusive Or (XOR)

Binary Operator, Symbol: ⊕

P Q P ⊕ Q

T T F

T F T

F T T

F F F
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Implication (if – then)

Binary Operator, Symbol: →

If it is raining then the ground is wet.

P Q P → Q

T T T

T F F

F T T

F F T
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Biconditional (if and only if)

Binary Operator, Symbol:↔

P Q P ↔ Q

T T T

T F F

F T F

F F T
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Statements and Operations

Statements and operators can be 

combined in any way to form new 

statements.

P Q P∧Q ¬(P∧Q) (¬P) ∨(¬Q)

T T T F F

T F F T T

F T F T T

F F F T T
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Equivalent Statements

P Q ¬(P∧Q) (¬P) ∨(¬Q) (¬(P∧Q))↔((¬P) ∨(¬Q))

T T F F T

T F T T T

F T T T T

F F T T T
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The statements ￢(P∧Q) and (￢P)∨(￢Q) are logically

equivalent, because ￢(P∧Q) ↔ (￢P)∨(￢Q) is always 

true.

Tautologies and 

Contradictions

A tautology is a statement that is 

always true.

Examples:

• R∨(￢R)

• ￢(P∧Q) → (￢P)∨(￢Q)

If S →T is a tautology, we write S ⇒T.

If S ↔T is a tautology, we write S ⇔T.
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Logic Circuits 

(Studied in depth in Chapter 12)
Electronic circuits; each input/output signal  can be viewed as a 0 or 1. 

– 0    represents False

– 1    represents True

Complicated circuits are constructed from three basic circuits called gates.

– The inverter  (NOT gate)takes an input bit and produces the negation of that bit.

– The OR gate takes two input bits and produces the value equivalent to the disjunction 

of the two bits.

– The AND gate takes two input bits and produces the value equivalent to the 

conjunction of the two bits.

More complicated digital circuits can be constructed by combining these basic 

circuits  to produce the desired output given the input signals by building a circuit 

for each piece of the output expression and then combining them. For example:
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Tautologies and 

Contradictions

A contradiction is a statement that is 
always false.

Examples:

• R∧(￢R)

• ￢(￢(P∧Q) ↔ (￢P)∨(￢Q))

The negation of any tautology is a contradiction, 
and 

the negation of any contradiction is a tautology.
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Exercises

We already know the following tautology:
￢(P∧Q) ⇔ (￢P)∨(￢Q)

Nice home exercise: Show that 
￢(P∨Q) ⇔ (￢P)∧(￢Q).

These two tautologies are known as De Morgan’s laws.

Table 6 in Section 1.3 shows many useful laws.

The first thirty or so exercises in Section 1.3 may help 
you get used to propositions and operators.
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Equivalences

When an iff statement is a tautology:

￢(P∧Q) ⇔ (￢P)∨(￢Q)

we can write it as an equivalence, 

meaning the two statements are 

logically equivalent:  

For any truth values of the variables  the 

statements are both true or both false

￢(P∧Q) ≡ (￢P)∨(￢Q)
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Important Equivalences

An equivalence that is important for you to 
think about and understand is:
P → Q ≡ ￢P∨Q

It follows from this that:
￢(P → Q) ≡ P ∧￢Q

There are many other good ones on 
page 28 that you should try to 
understand intuitively.  e.g. 
(P → Q) ∧(P → R) ≡ P → (Q ∧R)
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Propositional Functions

Propositional function (open sentence):

statement involving one or more variables,

e.g.: x-3 > 5.

Let us call this propositional function P(x), where P 

is the predicate and x is the variable.
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What is the truth value of P(2) ? false

What is the truth value of P(8) ?

What is the truth value of P(9) ?

false

true

Propositional Functions

Let us consider the propositional function 

Q(x, y, z) defined as:  

x + y = z.

Here, Q is the predicate and x, y, and z are the 

variables.
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What is the truth value of Q(2, 3, 5) ? true

What is the truth value of Q(0, 1, 2) ?

What is the truth value of Q(9, -9, 0) ?

false

true

Universal Quantification

Let P(x) be a propositional function.

Universally quantified sentence:

For all x in the universe of discourse P(x) is true.

Using the universal quantifier ∀:

∀x P(x)   “for all x P(x)” or “for every x P(x)”

(Note: ∀x P(x) is either true or false, so it is a 

proposition, not a propositional function.)
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Universal Quantification

Example: 

S(x): x is a UMB student.

G(x): x is a genius.

What does ∀x (S(x) → G(x)) mean ?

“If x is a UMB student, then x is a genius.”

or

“All UMB students are geniuses.”
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Existential Quantification

Existentially quantified sentence:

There exists an x in the universe of discourse for 
which P(x) is true.

Using the existential quantifier ∃:

∃x P(x)    “There is an x such that P(x).”

“There is at least one x such that P(x).”

(Note: ∃x P(x) is either true or false, so it is a 
proposition, but not a propositional function.)
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Existential Quantification

Example: 

G(x): x is a genius.

P(x): x is a UMB professor.

What does ∃x (P(x) ∧ G(x)) mean ?

“There is an x such that x is a UMB professor and x 
is a genius.”

or

“At least one UMB professor is a genius.”
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Quantification

Another example:

Let the universe of discourse be the real numbers.

What does ∀x∃y (x + y = 320) mean ?

“For every x there exists a y such that x + y = 320.”
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Is it true?

Is it true for the natural numbers?

yes

no

Disproof by Counterexample

A counterexample to ∀x P(x) is an object c so that 

P(c) is false. 

Statements such as ∀x (P(x) → Q(x)) can be 

disproved by simply providing a counterexample.
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Statement: “All birds can fly.”

Disproved by counterexample: Penguin.

Negation

¬(∀x P(x)) is logically equivalent to ∃x (¬P(x)).

¬(∃x P(x)) is logically equivalent to ∀x (¬P(x)).

See Table 2 in Section 1.4.

I recommend exercises 5, 7, 9 in Section 1.4, 

for starters.
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Precedence of Logical Operators

Operator precedence

¬ 1

∧ 2

∨ 3

→ 4

↔ 5
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Operator Precedence

p ∨ q ∧ r  means 

p ∨ (q ∧ r)

p → q ∨ r  means 

p → (q ∨ r)

p → q ↔ q → p  means 

(p → q) ↔ (q → p) 
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Let’s proceed to…

Mathematical Reasoning

Sections 1.6, 1.7
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Mathematical Reasoning

We need mathematical reasoning to

• determine whether a mathematical argument is 

correct or incorrect and

• construct mathematical arguments.

Mathematical reasoning is not only important for 

conducting proofs and program verification, but 

also for artificial intelligence systems (drawing 

inferences).
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Terminology

An axiom is a basic assumption about mathematical 

structures that needs no proof.

We can use a proof to demonstrate that a particular 

statement is true. A proof consists of a sequence of 

statements that form an argument.

The steps that connect the statements in such a 

sequence are the rules of inference.

Cases of incorrect reasoning are called fallacies.

A theorem is a statement that can be shown to be 

true. 
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Terminology

A lemma is a simple theorem used as an 

intermediate result in the proof of another theorem.

A corollary is a proposition that follows directly from 

a theorem that has been proved.

A conjecture is a statement whose truth value is 

unknown. Once it is proven, it becomes a theorem.
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Rules of Inference

Rules of inference provide the justification of the 

steps used in a proof.

One important rule is called modus ponens or the 

law of detachment. It is based on the tautology 

(p∧(p→q)) → q. We write it in the following way:

p

p → q
____
∴ q

The two hypotheses p and p → q are 

written in a column, and the conclusion

below a bar, where ∴ means “therefore”.

8 Sept 2015 CS 320 48

Rules of Inference

The general form of a rule of inference is:

p1

p2
.
.
.
pn

____
∴ q

The rule states that if p1 and p2 and … and

pn are all true, then q is true as well.

The following rules of inference can be 

used in any mathematical argument and do 

not require any proof.
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Rules of Inference

p
_____
∴ p∨q

Addition

p∧q
_____
∴ p

Simplification

p

q
_____
∴ p∧q

Conjunction

¬q

p→q 
_____
∴ ¬p

Modus tollens

p→q

q→r 
_____
∴ p→r 

Hypothetical 

syllogism

p∨q

¬p
_____
∴ q 

Disjunctive 

syllogism
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Arguments

Just like a rule of inference, an argument consists of 

one or more hypotheses and a conclusion. 

We say that an argument is valid, if whenever all its 

hypotheses are true, its conclusion is also true.

However, if any hypothesis is false, even a valid 

argument can lead to an incorrect conclusion. 
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Arguments

Example:

“If 101 is divisible by 3, then 1012 is divisible by 9. 
101 is divisible by 3. Consequently, 1012 is divisible 
by 9.”

Although the argument is valid, its conclusion is 
incorrect, because one of the hypotheses is false 
(“101 is divisible by 3.”).

If in the above argument we replace 101 with 102, 
we could correctly conclude that 1022 is divisible by 
9.
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Arguments
Which rule of inference was used in the last 

argument?

p: “101 is divisible by 3.”

q: “1012 is divisible by 9.”

p

p→q 
_____
∴ q

Modus 

ponens

Unfortunately, one of the hypotheses (p) is false.

Therefore, the conclusion q is incorrect.
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Arguments

Another example:

“If it rains today, then we will not have a barbeque 

today. If we do not have a barbeque today, then we 

will have a barbeque tomorrow.

Therefore, if it rains today, then we will have a 

barbeque tomorrow.”

This is a valid argument: If its hypotheses are true, 

then its conclusion is also true.
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Arguments

Let us formalize the previous argument:

p: “It is raining today.”

q: “We will not have a barbecue today.”

r: “We will have a barbecue tomorrow.”

So the argument is of the following form:

p→q

q→r 
_____
∴ p→r 

Hypothetical 

syllogism
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Arguments

Another example:

Gary is either intelligent or a good actor.

If Gary is intelligent, then he can count 

from 1 to 10.

Gary can only count from 1 to 2.

Therefore, Gary is a good actor.

i: “Gary is intelligent.”

a: “Gary is a good actor.”

c: “Gary can count from 1 to 10.”
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Arguments

i: “Gary is intelligent.”

a: “Gary is a good actor.”

c: “Gary can count from 1 to 10.”

Step 1: ¬c Hypothesis

Step 2: i → c            Hypothesis

Step 3: ¬i    Modus Tollens Steps 1 & 2

Step 4: a ∨ i Hypothesis

Step 5: a Disjunctive Syllogism

Steps 3 & 4

Conclusion: a (“Gary is a good actor.”)
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Arguments

Yet another example:

If you listened to me, you will have passed CS 320.

You passed CS 320.

Therefore, you have listened to me.

Is this argument valid?

No, it assumes ((p→q) ∧ q) → p.

This statement is not a tautology. It is false if p is 

false and q is true.
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Rules of Inference for Quantified Statements

∀x P(x)
__________

∴ P(c) if c∈U

Universal 

instantiation

P(c) for an arbitrary c∈U
___________________

∴ ∀x P(x)

Universal 

generalization

∃x P(x)
______________________

∴ P(c) for some element c∈U

Existential 

instantiation

P(c) for some element c∈U
____________________

∴ ∃x P(x) 

Existential 

generalization
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Rules of Inference for Quantified Statements

Example:

Every UMB student is a genius. 

George is a UMB student.

Therefore, George is a genius.

U(x): “x is a UMB student.”

G(x): “x is a genius.”
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Rules of Inference for Quantified Statements

The following steps are used in the argument:

Step 1: ∀x (U(x) → G(x)) Hypothesis

Step 2: U(George) → G(George) Univ. instantiation 

using Step 1

∀x P(x)
__________

∴ P(c) if c∈U

Universal 

instantiation

Step 3: U(George) Hypothesis

Step 4: G(George) Modus ponens

using Steps 2 & 3


