CS 320 **Applied Discrete Mathematics** Fall 2015 Colin Godfrey 8 Sept 2015

1

Course info The course web page will be www.cs.umb.edu/cs320, I hope. I can be reached by email at colin.godfrey@umb.edu. I'll have office hours Tu after class, M-3-607 The Powerpoint slides are originally descended from ones from Marc Pomplun, from CS 320, Spring 2003, with much subsequent modification. Slides will be available on the course web page. The pdf version will be handouts, 6 slides per page. 8 Sept 2015 2

Why Care about Discrete Math?

"Discrete" means separate things, as opposed to continuous things, as in calculus.

"Discrete" is guite different from "discreet".

· Digital computers are based on discrete "atoms" (bits).

Both a computer's

- structure (circuits) and
- operations (execution of algorithms) can be described by discrete math.

8 Sept 2015

What we shall cover

- · Logic and Set Theory
- Functions and Sequences
- Algorithms
- Applications of Number Theory
- Mathematical Reasoning
- Counting
- · Probability Theory
- · Relations and Equivalence Relations
- · Graphs and Trees
- Boolean Algebra

8 Sept 2015

Mathematical Appetizers

Useful tools for discrete mathematics: Logic

Set Theory

Functions

Sequences

8 Sept 2015

Logic

- · Crucial for reasoning in mathematics and in writing software.
- Used for designing electronic circuitry
- · Logic is a system based on propositions.
- · A proposition is a statement: something that is either true or false (not both).
- We say that the truth value of a proposition is either true (T) or false (F).
- T and F correspond to 1 and 0 in digital circuits

8 Sept 2015

Different Kinds of Logic

- There are various kinds of multiple-valued logics, where you can have True, False, and some other things, perhaps representing "unknown" or "maybe".
- In this course we shall stick to classical logic, where we have only T and F values.

8 Sept 2015

Let's Talk About Logic

Logic is a system based on propositions.

- A proposition is a statement that is either true or false (not both).
- We say that the truth value of a proposition is either true (T) or false (F).
- T and F correspond to 1 and 0 in digital circuits

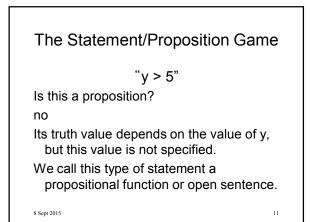
8

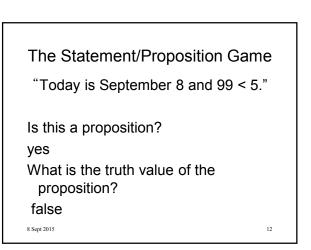
8 Sept 2015

7

The Statement/Proposition Game "Elephants are bigger than mice." Is this a proposition? yes What is the truth value of the proposition? true

The Statement/Proposition Game "520 < 111" Is this a proposition? yes What is the truth value of the proposition? false





The Statement/Proposition Game

"Please do not fall asleep."

13

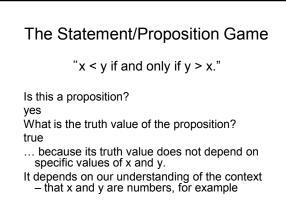
15

Is this a proposition? no

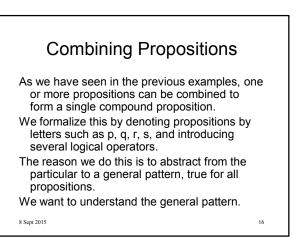
It's a request.

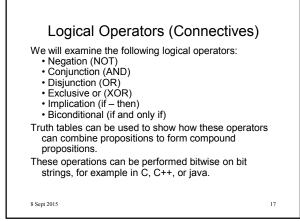
8 Sept 2015

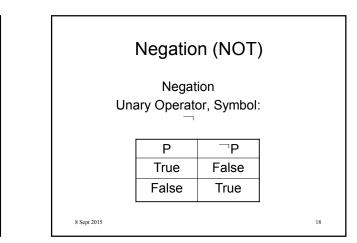
The Statement/Proposition Game "If all elephants are red, they can hide in cherry trees." Is this a proposition? yes What is the truth value of the proposition? This is a tough question, and may have a different meaning in ordinary life than it would have in logic.

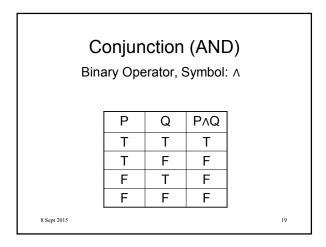


8 Sept 2015

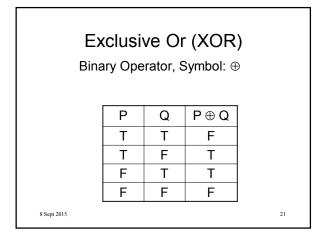








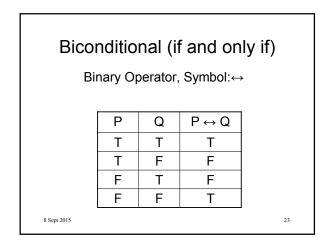
Disjunction (OR) Binary Operator, Symbol: v				
	Р	Q	PvQ	
	Т	Т	Т	
	Т	F	Т	
	F	Т	Т	
	F	F	F	
8 Sept 2015				20

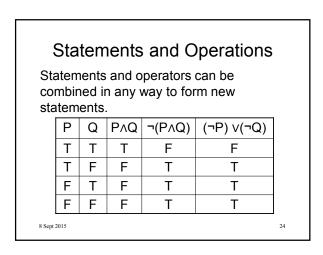


Implication (if – then)

Binary Operator, Symbol: \rightarrow If it is raining then the ground is wet.

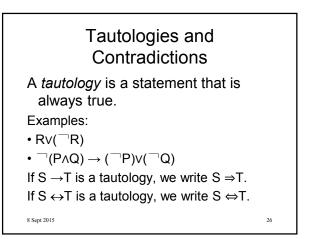
	Р	Q	$P \to Q$	
	Т	Т	Т	
	Т	F	F	
	F	Т	Т	
	F	F	Т	
2015				

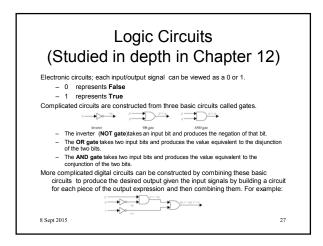


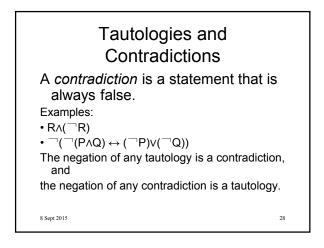


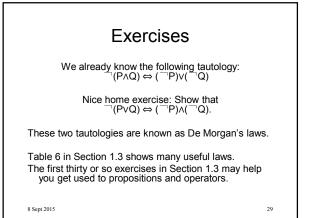
Ρ	Q	⊐(P∧Q)	(ר) v(ער)	(¬(P∧Q))↔((¬P) ∨(¬Q))
Т	Т	F	F	T
Т	F	Т	Т	Т
F	Т	Т	Т	Т
F	F	Т	Т	Т
The statements $\neg(P \land Q)$ and $(\neg P) \lor (\neg Q)$ are logically equivalent, because $\neg(P \land Q) \leftrightarrow (\neg P) \lor (\neg Q)$ is always true.				

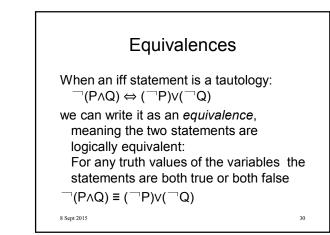
Г

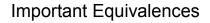












An equivalence that is important for you to think about and understand is: $P \rightarrow Q \equiv \neg P \lor Q$ It follows from this that: $\neg (P \rightarrow Q) \equiv P \land \neg Q$ There are many other good ones on page 28 that you should try to understand intuitively. e.g. $(P \rightarrow Q) \land (P \rightarrow R) \equiv P \rightarrow (Q \land R)$ seq 2015

Propositional function (open sentence):
statement involving one or more variables,
e.g.: x-3 > 5.Let us call this propositional function P(x), where P
is the predicate and x is the variable.What is the truth value of P(2) false
(What is the truth value of P(8) false
(What is the truth value of P(9) true

Propositional Functions

Let us consider the propositional function Q(x, y, z) defined as:

x + y = z.

Here, Q is the predicate and x, y, and z are the variables.

What is the truth value of Q(2, 3, 5) ?	true
What is the truth value of Q(0, 1, 2) ?	false
What is the truth value of Q(9, -9, 0) ?	true
8 Sept 2015	33

Universal QuantificationLet P(x) be a propositional function.Universally quantified sentence:For all x in the universe of discourse P(x) is true.Using the universal quantifier \forall : $\forall x P(x)$ "for all x P(x)" or "for every x P(x)"(Note: $\forall x P(x)$ is either true or false, so it is a proposition, not a propositional function.)

Universal Quantification

Example:

S(x): x is a UMB student. G(x): x is a genius.

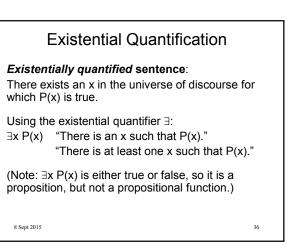
What does $\forall x (S(x) \rightarrow G(x))$ mean ?

"If x is a UMB student, then x is a genius." or

"All UMB students are geniuses."

8 Sept 2015

35



Existential Quantification

Example: G(x): x is a genius. P(x): x is a UMB professor.

What does $\exists x (P(x) \land G(x)) \text{ mean } ?$

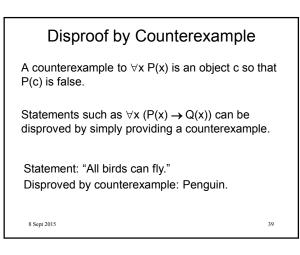
"There is an x such that x is a UMB professor and x is a genius."

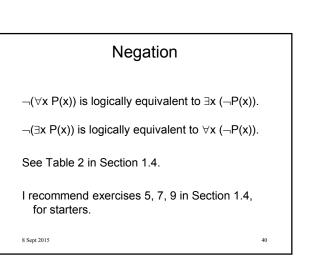
37

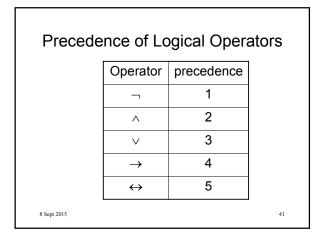
"At least one UMB professor is a genius."

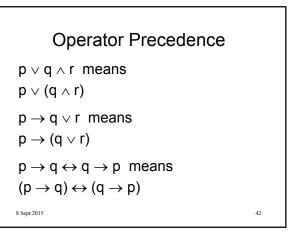
8 Sept 2015

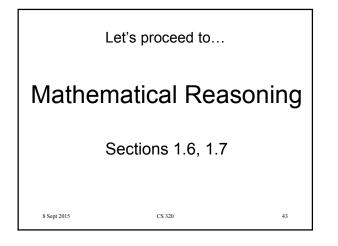
QuantificationAnother example:
Let the universe of discourse be the real numbers. $What does \forall x \exists y (x + y = 320) mean ?"for every x there exists a y such that <math>x + y = 320$."Is it true?yesIs it true for the natural numbers?no

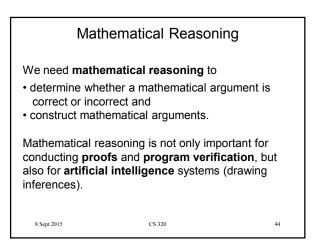




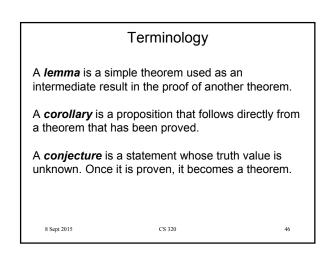




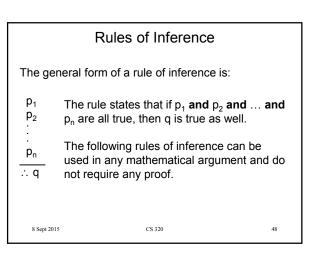


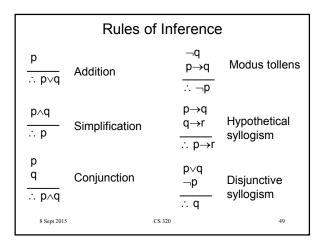


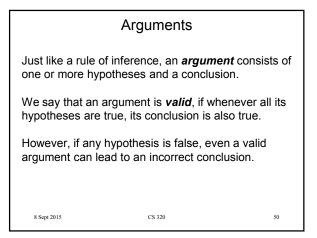
	Terminology			
An axiom is a bas structures that nee	ic assumption abou eds no proof.	t mathematical		
We can use a proof to demonstrate that a particular statement is true. A proof consists of a sequence of statements that form an argument.				
The steps that connect the statements in such a sequence are the <i>rules of inference</i> .				
Cases of incorrect reasoning are called <i>fallacies</i> .				
A <i>theorem</i> is a statement that can be shown to be true.				
8 Sept 2015	CS 320	45		



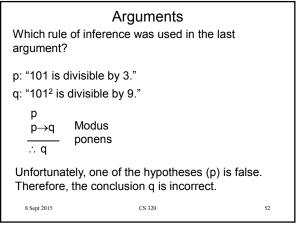
Hules of inference provide the justification of the
steps used in a proof.One important rule is called modus ponens or the
tautology $(p(-(p-q)) \rightarrow q)$. We write it in the following way: $p \rightarrow q$
 $\frac{p \rightarrow q}{2}$ The two hypotheses p and $p \rightarrow q$ are
billow a bar, where \therefore means "therefore".



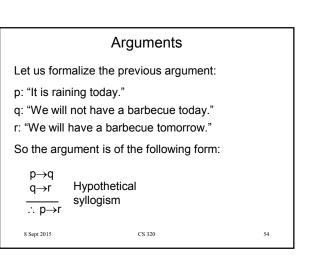




Arguments		
Example:		W
"If 101 is divisible by 3, then 101 ² is divisible by 9.		ar
101 is divisible by 3. Consequently, 101 ² is divisible by 9."		p:
,		q:
Although the argument is valid , its conclusion is incorrect , because one of the hypotheses is false ("101 is divisible by 3.").		
If in the above argument we replace 101 with 102, we could correctly conclude that 102 ² is divisible by		U
9.		TI
8 Sept 2015 CS 320 51		
	1 L	



	Arguments	
Another examp	le:	
"If it rains today, then we will not have a barbeque today. If we do not have a barbeque today, then we will have a barbeque tomorrow. Therefore, if it rains today, then we will have a barbeque tomorrow."		
This is a valid argument: If its hypotheses are true, then its conclusion is also true.		
8 Sept 2015	CS 320	53



	Arguments	
Another example:		
Gary is either intelli If Gary is intelligent from 1 to 10. Gary can only coun Therefore, Gary is a	t from 1 to 2.	
i: "Gary is intelligen a: "Gary is a good a c: "Gary can count	actor."	
8 Sept 2015	CS 320	55

Arguments				
i: "Gary is intelligent." a: "Gary is a good actor." c: "Gary can count from 1 to 10."				
Step 1: $\neg c$ Step 2: $i \rightarrow c$ Step 3: $\neg i$ Step 4: $a \lor i$ Step 5: a	Hypothesis Hypothesis Modus Tollens Steps Hypothesis Disjunctive Syllogism Steps 3 & 4	1 & 2		
Conclusion: a ("Gary is a good actor.")				
8 Sept 2015	CS 320	56		

Arguments				
Yet another example:				
If you listened to me, you will have passed CS 320. You passed CS 320. Therefore, you have listened to me.				
Is this argument valid?				
No, it assumes $((p\rightarrow q) \land q) \rightarrow p$. This statement is not a tautology. It is false if p is false and q is true.				
8 Sept 2015	CS 320	57		

