
Introduction to OOP and UML

• Programming Paradigms

o Procedural

o Functional

o Object Oriented

• Object-Oriented Design

• Reading:
➢ L&C, App A

➢ http://algs4.cs.princeton.edu/11model

• Unified Modeling

Language

o Use Cases

o Class Diagrams

o Sequence Diagrams

Programming Paradigms

• A paradigm is an ideal or a model to follow in doing
something, e.g. programming

• In CS110, you were introduced to the three predominant
programming paradigms:
o Procedural

o Functional

o Object-Oriented

• In this course, we will further explore the Object-Oriented
paradigm using Java

Object-Oriented Design

• The Object-Oriented Programming (OOP) paradigm

was developed by software engineers to solve most if not
all of the problems described in L&C, Section 1.1.

• This indicates that software designed according to OOP
principles treats data as objects, belonging to classes.

• It has become a predominant programming style for use
in many applications, e.g. graphical user interfaces (GUIs).

• Java is considered to be an OOP language because it has
specific features to fully support OOP

Object-Oriented Design

• In the OOP paradigm, the designer focuses on the data,
rather than the algorithmic steps

• The data is associated with objects that are present in the
problem, such as:

o Monitor

o Keyboard

o File

o Frame for a GUI

o Icon in a frame for a GUI

Object-Oriented Design

• Use UML “use case diagrams” to sketch out aspects of
the problem you are trying to solve

• Don’t get too detailed yet

• Do NOT use flow charts or pseudo-code yet

Cat Dog Snake

Food

Driver

Car

Animals

Engine Trans.

Components

Tire

Object-Oriented Design

• “Classify” the objects based on similarities of their
attributes and behaviors

o Examples of objects that could be classified as Animals: Dogs,
Cats, Snakes, Fish, etc.

• Identify objects that have other objects as components or
parts of themselves

o Example: A car is made up of an engine, a transmission, and
tires

• Identify objects that use other objects

o A Driver drives a Car and an Animal eats Food

Object-Oriented Design

• Define the names of classes for the objects

o Usually nouns, e.g. Driver, Car, Animal, Cat, etc.

• Define the attributes of the classes

o Attributes: “things that objects of the class are”
o Usually adjectives, e.g. color, size, furry, etc.

• Define the behaviors of the classes

o Behaviors: “things that object of the class can have done to
them or services they can perform”

o Usually verbs, e.g. drive, eat, etc.

Object-Oriented Design

• Define the relationships between classes

o Inheritance – More specific classes from general ones, e.g. a
Cat is an Animal, a Dog is an Animal

o Interface – A standard way that these objects can connect to
other objects, e.g. power cord, etc.

o Aggregation/Composition – Classes that are built up from or
composed of component classes, e.g. a Car has an Engine, a
Transmission, and Tires

o Dependency – Need for objects of other classes, e.g. a Driver
drives a Car, a Cat eats Food

Object-Oriented Design

• Define the methods of each class to support the
interactions and behavior of its objects

• Identify any methods that are identical to methods other
classes also provide to connect to a standard interface,
e.g. implementing a network connector or a power cord
on a PC

• Flow charts or pseudocode may be used for individual
method designs (procedural code)

Unified Modeling Language (UML)

• The Unified Modeling Language (UML) was developed in
the 1990’s to support OOP software design

• The ”three amigos” (Grady Booch, Ivar Jacobson, and Jim
Rumbaugh) unified their separate methodologies when
they formed Rational Corporation

• A good reference is UML Distilled, 3rd Ed., Martin Fowler,
Addison-Wesley/Pearson

11

Unified Modeling Language (UML)

• UML is a graphical tool to visualize and analyze the
requirements and do design of an object-oriented
solution to a problem

• Three basic types of diagrams:
1. Use Case Diagram (Shown previously)

2. Class Diagram (The most useful one for us)

3. Interaction Diagram

• I will use Class Diagrams in presenting the design for our
Java programs / projects

12

Unified Modeling Language (UML)

• Advantage of UML – It is graphical

o Allows you to visualize the problem / solution

o Organizes your detailed information

• Disadvantage of UML – It is graphical

o Can be done with pencil and paper – tedious!

o Commercial UML S/W tools are expensive!

▪ Example: Rational ROSE

▪ IBM acquired Rational and the three amigos got rich

o There are some free-ware UML Design Tools

13

UML Class Diagrams

• UML class diagrams show:

o The external and internal attributes and methods for each class

o The relationships between the classes

• They’re a static view of the program structure
• They do not show:

o The number of objects of each class instantiated

o The timing of the interactions between objects

UML Class Diagrams

Class Name

List of Attributes

List of Methods

+ publicClassAttribute : datatype
- privateClassAttribute : datatype
+ publicInstanceAttribute : datatype
- privateInstanceAttribute : datatype

+ publicClassMethod (parameters) : returnDataType
- privateClassMethod (parameters) : returnDataType
+ publicInstanceMethod (parameters) : returnDataType
- privateInstanceMethod (parameters) : returnDataType

15

UML Class Diagrams

• UML Attribute Descriptions

o Protection: + public, - private, # protected

o Attribute name :

o Attribute data type

• UML Method Descriptions

o Protection: + public, - private, # protected

o Method name

o Method parameter list (name : datatype, etc.) :

o Method return type

• Underlined means class attribute or method

UML Class Diagrams

Class Name Super Class Name

Class Name

Interface Name

Class Name

Required Methods

Class Name

Depends on ImplementsInherits from

Driver Class

depends on

Car Class

Cat Class

inherits from

Animal Class

Computer Class

implements

WiFi Interface

UML Class Diagrams

Aggregate Name

Is composed of

Component3Component1

Car Class

is composed of

Engine Class, Transmission Class, and Tire Class

Component2

UML Interaction Diagrams

• UML interaction diagrams show

o The objects of each class involved in a scenario

o The order of interactions between the objects

• They are a dynamic view of the behavior

• Often called ladder diagrams, due to their resemblance

to a ladder or group of ladders

18

UML Interaction Diagrams

19

Time

A Timeline For Each Class : Object Involved

Driver : me
Car:
myCar

Engine:
itsEngine

Transmission :
itsTransmission

Turn Key

Start

Put in Gear
Shift

OK Return

OK Return

OK Return

OK Return

