
1

ADT’s, Collections/Generics and
Iterators

• Abstract Data Types (ADT’s)
• Collections / Stack Example

• Generics / Parameterized Classes

• Iterators

• Reading: L&C: 3.1-3.5, 7.1-7.2

DRAFT

2

Abstract Data Types ſADT’sƀ

• A data type is a set of values and operations that
can be performed on those values

• The Java primitive data types (e.g. int) have values
and operations defined in Java itself

• An Abstract Data Type (ADT) is a data type that
has values and operations that are not defined in
the language itself

• In Java, an ADT is implemented using a class or an
interface

3

Abstract Data Types ſADT’sƀ
• An Abstract Data Type is a programming

construct used to implement a data structure

o It is a class with methods for organizing and
accessing the data that the ADT encapsulates

o The data storage strategy should be hidden by the
API (the methods) of the ADT

Class that

uses

an ADT

Class that

implements

an ADT

Data

Storage

Interface

(Methods and Constants)

4

Abstract Data Types ſADT’sƀ

• The library code for Arrays.sort is designed to
sort an array of Comparable objects:
public static void sort (Comparable [] data)

• The Comparable interface defines an ADT

o There are no objects of Comparable “class”
o There are objects of classes that implement the

Comparable interface (e.g. the Polynomial class in
our Project 1) with a compareTo()method

• Arrays.sort only uses methods defined in the
Comparable interface, i.e. compareTo()

Collections

• The Java Collections classes are ADT’s that can be
used to create container objects to hold and
manage access to a collection of other objects

• In Java, these classes can be used similarly to
Python lists, tuples, and/or dictionaries

• However, Java Collections are defined in classes
(not in the language itself) so the programmer
defines the most appropriate methods for adding
and accessing the data objects they contain

• The Collections classes are parameterized to allow
identification of the type of their contents

Parameterized Classes

• To allow the compiler to type check the contents of
a collection class, the class definition is
parameterized, e.g.

public class ArrayList<T> ... // fill in T

• Note: The letter used inside <> is a dummy and can
be <T> like C++ or <E> like Oracle

• I prefer to use <T> based on C++ popularity and
that is also what our textbook uses

• The type T must be a reference type - not primitive

6

7

Parameterized Classes

• Defining a parameterized class named Generic:
public class Generic<T> {

// use T in attribute declarations

private T whatIsThis;

// use T as a method’s parameter type
public void doThis(T input) { … }
// use T as a method’s return type
public T doThat(…) {

return whatIsThis;

}

}

8

Parameterized Classes

• Instantiating parameterized class Generic
Generic<String> g = new Generic<String>();

• Use methods with objects of the actual type
g.doThis(“Hello”);
String s = g.doThat(…);

• The compiler can verify the correctness of any
parameters passed or assignments of the return
values

• No casting of data types should be required (If it
is, you aren’t using generics correctly)

9

Parameterized Classes

• Use a known class - not the dummy letter T
Generic<T> g = new Generic<T>(); // error

• Unless in a generic class where T is defined
public class AnotherGenericClass<T>

{

…
Generic<T> g = new Generic<T>(); // OK

…
}

10

Parameterized Classes

• Sometimes we want to place a constraint on the
class that can be used as T

• We may need T to be a type that implements a
specific interface (e.g. Comparable)
public class Sorter<T extends

Comparable <T>>

{

// now our code can call compareTo

// method on type T objects here

}

11

Parameterized Classes

• Don’t omit an identified <type> in new code
Generic g = new Generic(); // legacy code?

• Compiler will give incompatible type errors
without an explicit cast (narrowing)
String s = g.doThat(…); // error
String s = (String) g.doThat(…); // OK

• Compiler will give unchecked warnings
g.doThis(“Hello”); // warning

12

Parameterized Classes

• Can’t instantiate arrays of the generic data type
without using a “trick”
T [] t = new T[10]; // compile error

T [] t = (T []) new Object[10]; // OK

• Can’t instantiate arrays of a parameterized class
without using a slightly different “trick”
ArrayList<String>[] a =

(ArrayList<String>[]) new ArrayList[10];

o Just casting a new Object[10] compiles OK but

throws an exception at run time (Ouch!)

Parameterized Classes

• When you use either of the above “tricks”, the
compiler will give you an “unchecked” warning

• Normally, we would “fix” our code to get rid of all
compiler warnings but here we can’t “fix” it

• Use the compiler SuppressWarnings directive

• Place this line ahead of the method header
@SuppressWarnings("unchecked")

• That directive will allow a “clean” compilation

14

An Example Collection: Stack

• A stack is a linear collection where the elements
are added or removed from the same end

• The access strategy is last in, first out (LIFO)

• The last element put on the stack is the first
element removed from the stack

• Think of a stack of cafeteria trays

15

A Conceptual View of a Stack

Top of Stack

Adding an Element Removing an Element

An Example Collection: Stack

• A stack collection has many possible uses:

o Reversing the order of a group of elements

▪ Push all elements onto a stack and pop them

o Evaluating Post-fix Expressions

▪ Text example which we will cover later in the course

o Back tracking in solution for a maze

▪ Push previous location on a stack to save it

▪ Pop previous location off the stack at a blind end

• We will discuss more uses for stacks later

16

17

Iterating over a Collection

• If we need to write code that retrieves all the
elements of a collection to process them one at a
time, we may use the “Iterator” design pattern
from Design Patterns, Gamma et al.

• We call this iterating over the collection
• All Collection classes implement Iterable

Collection<T> extends Iterable<T>

• The Iterable interface requires one method:
Iterator<T> iterator();

18

Iterable Objects and Iterators

• An Iterable object allows you obtain an Iterator
object to retrieve objects from it

Iterator<T> iterator() returns an Iterator object

to access this Iterable group of objects

• An Iterator object allows you to retrieve a
sequence of all T objects using two methods:

boolean hasNext() returns true if there are more

objects of type T available in the group

T next() returns the next T object from the group

19

Iterable Objects and Iterators

• All classes in the Java Collections library
implement the Collection interface and are
Iterable OR you can implement Iterable in any
class that you define

• If myBookList is an object of an Iterable class
named List that contains Book objects
ArrayList<Book> myBookList = new ArrayList<Book>();

• We can retrieve all the available Book objects

from it in either of two ways:

20

Iterable Objects and
Iterators

• We can obtain an Iterator object from an
Iterable object and use it to retrieve all the
items from the Iterable object indirectly:

• We can use the Java for-each loop to retrieve

the contents of an Iterable object

ArrayList<Book> bookList = new ArrayList<Book>();

// Code to add some Books to the bookList

Iterator<Book> itr = bookList.iterator();

while (itr.hasNext())

System.out.println (itr.next());

for (Book myBook : bookList)

System.out.println (myBook);

Iterable Objects and Iterators

• The Iterator hasNext() and next() methods do not
modify the contents of the collection

• There is a third method called remove() that can be
used to remove the last object retrieved by the
next() method from the collection

• This is not always required for an application, but
the method must be present to compile, so the
code of the class that implements the iterator
could throw an exception when remove is called

21

