
1

Stacks

• Stack Abstract Data Type (ADT)

• Stack ADT Interface

• Stack Design Considerations

• Stack Applications

• Evaluating Postfix Expressions

• Introduction to Project 2

• Reading: L&C Section 3.2, 3.4-3.8

DRAFT

2

Stack Abstract Data Type

• A stack is a linear collection where the elements
are added or removed from the same end

• The processing is last in, first out (LIFO)

• The last element put on the stack is the first
element removed from the stack

• Think of a stack of cafeteria trays

3

A Conceptual View of a Stack

Top of Stack

Adding an Element Removing an Element

4

Stack Terminology

• We push an element on a stack to add one

• We pop an element off a stack to remove one

• We can also peek at the top element without
removing it

• We can determine if a stack is empty or not and
how many elements it contains (its size)

• The StackADT interface supports the above
operations and some typical class operations such
as toString()

5

Stack ADT Interface

<<interface>>

StackADT<T>

+ push(element : T) : void

+ pop () : T

+ peek() : T

+ isEmpty () : bool

+ size() : int

+ toString() : String

6

Stack Design Considerations

• Although a stack can be empty, there is no
concept for it being full. An implementation
must be designed to manage storage space

• For peek and pop operation on an empty stack,
the implementation would throw an exception.
There is no other return value that is equivalent
to “nothing to return”

• A drop-out stack is a variation of the stack
design where there is a limit to the number of
elements that are retained

7

Stack Design Considerations

• No iterator method is provided

• That would be inconsistent with restricting
access to the top element of the stack

• If we need an iterator or other mechanism to
access the elements in the middle or at the
bottom of the collection, then a stack is not
the appropriate data structure to use

8

Applications for a Stack

• A stack can be used as an underlying mechanism for many
common applications

o Evaluate postfix and prefix expressions

o Reverse the order of a list of elements

o Support an “undo” operation in an application
o Backtrack in solving a maze

9

Evaluating Infix Expressions

• Traditional arithmetic expressions are written in
infix notation (aka algebraic notation)

(operand) (operator) (operand) (operator) (operand)

4 + 5 * 2

• When evaluating an infix expression, we need to
use the precedence of operators
o The above expression evaluates to 4 + (5 * 2) = 14

o NOT in left to right order as written (4 + 5) * 2 = 18

• We use parentheses to override precedence

10

Evaluating Postfix Expressions

• Postfix notation is an alternative method to
represent the same expression

(operand) (operand) (operand) (operator) (operator)

4 5 2 * +

• When evaluating a postfix expression, we do
not need to know the precedence of
operators

• Note: We do need to know the precedence of
operators to convert an infix expression to its
corresponding postfix expression

11

Evaluating Postfix Expressions

• We can process from left to right as long as we use the
proper evaluation algorithm

• Postfix evaluation algorithm calls for us to:

o Push each operand onto the stack

o Execute each operator on the top element(s) of the stack (An
operator may be unary or binary and execution may pop one or
two values off the stack)

o Push result of each operation onto the stack

12

Evaluating Postfix Expressions

• Expression = 7 4 -3 * 1 5 + / *

-3

4

7

-12

7

-12

7

1

5*

-12

7

6

-2

7 -14

+

/

*

13

Evaluating Postfix Expressions

• Core of evaluation algorithm using a stack
while (tokenizer.hasMoreTokens()) {

token = tokenizer.nextToken(); // returns String

if (isOperator(token) {

int op2 = (stack.pop()).intValue(); // Integer

int op1 = (stack.pop()).intValue(); // to int

int res = evalSingleOp(token.charAt(0), op1, op2);

stack.push(new Integer(res));

}

else // String to int to Integer conversion here

stack.push (new Integer(Integer.parseint(token)));

} // Note: Textbook’s code does not take advantage of
// Java 5.0 auto-boxing and auto-unboxing

14

Evaluating Postfix Expressions

• Instead of this:
int op2 = (stack.pop()).intValue(); // Integer to int

int op1 = (stack.pop()).intValue(); // Integer to int

int res = evalSingleOp(token.charAt(0), op1, op2);

• Why not this:
int res = evalSingleOp(token.charAt(0),

(stack.pop()).intValue(),

(stack.pop()).intValue());

• In which order are the parameters evaluated?

• Affects order of the operands to evaluation

15

Evaluating Postfix Expressions

• The parameters to the evalSingleOp method are

evaluated in left to right order

• The pops of the operands from the stack occur in the
opposite order from the order assumed in the interface to
the method

• Results: Original Alternative

6 3 / = 2 6 3 / = 0

3 6 / = 0 3 6 / = 2

16

Evaluating Postfix Expressions

• Our consideration of the alternative code above
demonstrates a very good point

• Be sure that your code keeps track of the state of the data
stored on the stack

• Your code must be written consistent with the order data
will be retrieved from the stack to use the retrieved data
correctly

17

Introduction to Project 2

• The term fractal was coined by Mandelbrot in 1975
for a geometric shape that has a dimensional order
between the normal 1D, 2D, 3D, etc dimensions

• The concept has been used to describe the rough
ragged shape of shorelines and other phenomena

• If you measure shoreline length at a large scale, it is
shorter than if you measure pieces of it at any
smaller scale and add up the lengths

• Hence, a shoreline is greater than 1D but obviously
is still less than 2D

18

Introduction to Project 2

• A visual characteristic of a fractal such as a
shoreline is that it has the same appearance at a
large scale as it does when you look at it at
smaller and smaller scales

• It repeats the same shape at all scales

• The fractal we will be generating in Project 2 is a
repeating sequence of triangles inside of each
triangle – similar to a Sierpinski triangle

• See the following figure

Introduction to Project 2

19

w

d

Position Directions

20

Introduction to Project 2

• You are provided the following code:

Applet.html – An html file to launch the applet (You
can use the Appletviewer instead of this)

Corner.java – Represents the corner of a triangle and
has some useful methods (len and mid)

Triangle.java – Represents a triangle with three
corners and has some code you need to write

Iterative.java and Recursive.java – The top level
applets for drawing the sequence of triangles

Introduction to Project 2

21

• Study and understand the provided code

• You need to do the following:

–Write Triangle class getNextLevel() and size()

• Use provided Corner class methods – len and mid

• The getNextLevel method returns one of six possible

Triangle objects based on the index parameter

• The Size method returns the circumference based on

the three Corner objects.

–Write the Iterative class drawTriangle method

–Write the Recursive class drawTriangle method

Introduction to Project 2

• In the iterative drawTriangle method:

o Instantiate a stack to contain Triangle objects

o Push the Triangle t parameter on the stack

o Iterate while the stack is not empty

▪ Remove and draw the Triangle on top of the stack

▪ If it is still larger than Triangle.SMALLEST create and push
its six sub-triangles on the stack

• Test the Applet

• Modify it to use a queue instead of a stack

• Test the Applet again
22

Introduction to Project 2

• In the recursive drawTriangle method:

o Draw the Triangle t parameter

o If it is still larger than Triangle.SMALLEST

▪ Recursively call drawTriangle six times - once with each of
the six sub-triangles of the Triangle t

• Test the Applet

• Write a report on all three Applets versions (two
iterative and one recursive)

