
1

Searching and Sorting

• Searching algorithms with simple arrays

• Sorting algorithms with simple arrays
o Selection Sort

o Insertion Sort

o Bubble Sort

o Quick Sort

o Merge Sort

• Introduction to Project 3

• Reading for this lecture: L&C 8.1-8.2

DRAFT

2

Searching

• Searching is the process of finding a target element within a
group of items called the search pool

• The target may or may not be in the search pool

• We want to perform the search efficiently, minimizing the
number of comparisons

• Let's look at two classic searching approaches: linear search and
binary search

• We'll implement the searches with polymorphic Comparable
objects

3

Linear Search

• A linear search begins at one end of the search pool and
examines each element

• Eventually, either the item is found or the end of the search
pool is encountered

• On average, it will search half of the pool

• This algorithm is O(n) for finding a single element or
determining it is not found

4

Binary Search

• A binary search assumes the list of items is sorted

• Each pass eliminates a large part of the search pool
with one comparison (“20 questions game”)

• A binary search examines the middle element of
the list -- if the target is found, the search is over

• The process continues by comparing the target to
the middle of the remaining viable candidates

• Eventually, the target is found or there are no
remaining viable candidates (and the target has
not been found)

5

Recursive Implementation

• When we studied binary search in CS110, we used
a loop and narrowed the range of the portion of
the array we were searching

• Now that we understand recursion, we can study a
recursive implementation:

boolean found = binarySearch

(array, 0, data.length – 1, element);

public boolean binarySearch

(T[] data, int min, int max, T target)

6

Binary Search

• Recursive implementation:
{

boolean found = false;

int mid = (min + max) / 2;

if (data[mid].compareTo(target) == 0)

found = true;

else if (data[mid].compareTo(target) > 0) {

if (min <= mid – 1)

found = binarySearch(data, min, mid-1, target);

}

else if (mid + 1 <= max)

found = binarySearch(data, mid+1, max, target);

return found;

}

7

Sorting
• Sorting is the process of arranging a list of items in a

particular order

• The sorting process is based on specific value(s)
o Sorting a list of test scores in ascending numeric order

o Sorting a list of people alphabetically by last name

• Sequential sorts O(n2): Selection, Insertion, Bubble

• Logarithmic sorts O(nlogn): Quick, Merge

• Again, we'll implement the sorts with polymorphic
Comparable objects

• Note: Text uses parameterized static methods, but
the code of the methods is the same

8

Selection Sort
• The approach of Selection Sort:

o Select a value and put it in its final place in the list

o Repeat for all other values

• In more detail:

o Find the smallest value in the list

o Switch it with the value in the first position

o Find the next smallest value in the list

o Switch it with the value in the second position

o Repeat until all values are in their proper places

9

Selection Sort

• An example:
original: 3 9 6 1 2

smallest is 1: 1 9 6 3 2

smallest is 2: 1 2 6 3 9

smallest is 3: 1 2 3 6 9

smallest is 6: 1 2 3 6 9

• Each time, the smallest remaining value is found and exchanged
with the element in the "next" position to be filled

10

Insertion Sort
• The approach of Insertion Sort:

o Pick any item and insert it into its proper place in a
sorted sublist

o Repeat until all items have been inserted

• In more detail:

o Consider the first item to be a sorted sublist (of one item)

o Insert the second item into the sorted sublist, shifting the
first item as needed to make room to insert the new
addition

o Insert the third item into the sorted sublist (of two items),
shifting items as necessary

o Repeat until all values are inserted into their proper
positions

11

Insertion Sort

• An example:
insert 9: 3 9 6 1 2

insert 6: 3 9 6 1 2

insert 3: 3 6 9 1 2

insert 2: 1 3 6 9 2

finished: 1 2 3 6 9

12

Bubble Sort

• Bubble sort algorithm sorts the values by
repeatedly comparing neighboring elements

• It swaps their position if they are not in order

• Each pass through the algorithm moves the
largest value to its final position

• A pass may also reposition other elements

• May be more efficient if looping is stopped
when no changes were made on last pass

13

Bubble Sort

• An example of one pass:
Original: 9 6 8 12 3 1 7

Swap 9 & 6: 6 9 8 12 3 1 7

Swap 9 & 8: 6 8 9 12 3 1 7

No swap: 6 8 9 12 3 1 7

Swap 12 & 3: 6 8 9 3 12 1 7

Swap 12 & 1: 6 8 9 3 1 12 7

Swap 12 & 7: 6 8 9 3 1 7 12

• Each pass moves largest to last position

• Each pass can iterate one less time than last

14

Quick Sort

• The quick sort algorithm is a “divide and
conquer” algorithm

• It compares the data values to a partition
element while partitioning into two sub-lists

• Then, it recursively sorts the sub-lists on each
side of the partition element

• The recursion base case is a list containing only
1 element (which is inherently sorted)

• A simplistic choice of the partition element is
the first element, but that may not be best

15

Quick Sort

90 65 7 305 120 110 8

Initial Data (Select first element as the partition element)

90 65 7 305120 1108

Move all data below partition element value to the left

Move all data above partition element value to the right

Split Point (Only a coincidence that it is in middle)

9065 7 305120 1108

Swap first element with element at the split point

Partition element is now in its correct position

Next Pass Next Pass

16

Quick Sort

• If the list is already (or nearly) sorted, the first
element is a poor choice as partition element

• The two partitioned sub-lists are lopsided
o One may contain only one element

o The other may contain all the other elements

• In this case, the quick sort is not so quick

• A better choice might be the middle element of
the list, but note that there is still an initial order
for the elements that is “pathological”

17

Merge Sort

• Merge sort is another “divide and conquer” algorithm with
a different division strategy
o Cut the array of data in half

o Sort the left half (recursively calling itself)

o Sort the right half (recursively calling itself)

o Merge the two sorted halves of the array

• The merge process for two arrays that are already sorted is
only O(n) and we perform O(log n) merges

18

Merge Sort

• All comparisons are in the merge process

• Copy all elements into a workspace array

• Copy them back into the original array
o If there are elements remaining in both halves,

compare first elements of each and copy one

o If there are no elements remaining in left half, copy
remainder of right half

o If there are no elements remaining in right half,
copy remainder of left half

19

Faster Sorts / Memory Usage

• Note: the two faster sorts use more memory

• All of the sort algorithms use the data array, a
temp location to do a 3-way swap, and a few
variables to control the loop / recursion

• What additional memory is used in the Quick
Sort algorithm?

• What additional memory is used in the Merge
Sort algorithm?

20

Text’s Merge Sort Memory
Usage

Algorithm as Written Algorithm as It Could be Written

(Uses only ½ the memory for large N)

Wasted

memory

The text’s code allocates memory for the T [] before the recursive

calls and only needs to use that memory after the recursive calls.

This uses more memory than would be required with different design.

21

Introduction to Project 3

• In Project 3, you will experiment with and observe
the performance of various sorting algorithms
applied to data in different states of organization

• Some of the data will be organized randomly,
some will be already sorted (or almost sorted), and
some will be sorted in exactly in the opposite
order of the desired order

• You will learn that different sort algorithms have
different performance in these different situations

22

Introduction to Project 3

• You will be provided the L&C example code for
the class “SortingAndSearching” which contains
multiple sorting methods each of which uses a
different algorithm

• You will also be provided a skeleton of the main
class that reads a file and sets up its data in an
array for sorting

• You will be provided with some test data files that
present different situations for sorting

23

Introduction to Project 3

• “Instrument” the code of the L&C class so that
you can determine how many comparisons each
performs in the process of sorting a data file
o Add/modify attributes and/or methods as needed

• Add code in the main class to sort the data files
using each algorithm and record the results

• Modify some of the sort algorithms and study
comparison with the unmodified versions

• Write a report that compares your results to the
Big-O notation behavior that you expected for
each algorithm and explain all your observations

