
Heaps and Heap Sorting

• Heaps implemented in an Array

o Heap Sorting

• Reading: L&C 12.5

Implementing Heaps in an Array

• Two of the programming steps for a heap using links were

complicated

o Finding the next parent for an add

o Finding the new value for next after a remove

• Those steps are trivial for a heap in an array

• If the index 0 is the root and "next" is the index for a

reference to the next open space:

o After adding an element, just increment next

o To remove an element, just decrement next

Implementing Heaps in an Array

• The class header, attributes, and constructor:
public class ArrayHeap<T extends Comparable> ...

{ // not shown as a subclass like in textbook

private static final int DEFAULT_CAPACITY = 50;

protected int count;

protected T[] tree;

public ArrayHeap()

{

count = 0;

tree = (T[]) new Object[DEFAULT_CAPACITY];

}

Implementing Heaps in an Array

• The add method:
public void addElement(T obj)

{

if (count == tree.length)

expandCapacity(); // same as for any array

tree[count++] = obj;

if (count > 1)

heapifyAdd();

}

Implementing Heaps in an Array

• The heapifyAdd helper method
private void heapifyAdd()

{

int next = count – 1;

T temp = tree[next]; // pick up new value

while ((next != 0) && // move up the tree as needed

temp.compareTo(tree[(next-1)/2]) < 0) {

tree[next] = tree[(next-1)/2]; //move parent down

next = (next – 1)/2;

}

tree[next] = temp; // (re)insert new value

}

Implementing Heaps in Arrays

• The removeMin method:
public T removeMin() ...

{

// check for empty heap not shown

T minElement = tree[0]; // start at the root

tree[0] = tree[count–1];

heapifyRemove();

tree[--count] == null; // kill stale reference

return minElement;

}

Implementing Heaps in Arrays

• The heapifyRemove method (My version):
private void heapifyRemove()

{

int node = 0;

T temp = tree[node];

int next = 0;

do {

if (next != 0) { // skip until second+ pass

tree[node] = tree[next];

node = next;

}

Implementing Heaps in an Array

• The heapifyRemove method (continued):
int left = 2 * node + 1;

int right = 2 * (node + 1);

if(tree[left] == null && tree[right] == null)

next = count; // force end of loop

else if (tree[right] == null ||

tree[left].compareTo(tree[right]) < 0)

next = left;

else

next = right;

} while (next < count &&

tree[next].compareTo(temp) < 0);

tree[node] = temp;

}

Implementing Heaps in Arrays

• I didn’t like the repetition of 8 lines of code in the

initialization before the while loop and as 80% of the code

in the body of the loop

• Whenever you see that situation in code, it is a clue that a

do-while loop might be better

• I rewrote the heapifyRemove method as a do-while loop

instead of the textbook code that uses a while loop - both

code versions perform the same steps in the same order

Heap Sorting

• If we have a method with a parameter that is an array of

type T to be sorted, it can be written to use a heap instead

of one of the in-place array sorts we studied in lecture 19

• We can take each element from the array and put it in a

heap

• Then loop removing the min from the heap and putting

each element back into the array in order

Heap Sorting

// only this method needs to be shown for the example

public void heapsort(T[] data)

{

HeapADT<T> temp = new ArrayHeap<T>();

// copy the array into the heap

for (T datum : data) // use a for-each loop

temp.addElement(datum);

// place the sorted elements back into the array

int count = 0;

while(!temp.isEmpty())

data[count++] = temp.removeMin();

} // temp goes out of scope

Heap Sorting Performance

• The performance is 2*N*log N or O(N logN)

• That is the same as quicksort or merge sort

• It uses the same amount of extra memory as the merge sort

algorithm

