
Sets and Maps

• Sets

• Maps

• The Comparator Interface

• Sets and Maps in Java Collections API
o TreeSet

o TreeMap

• Review for Exam

• Reading: 13.1-13.6

Sets

• A set is a collection of elements with no duplicates

• We had a set application in Lab 3 where we needed a data

structure to represent a drum full of Bingo balls for random

drawing

• Since there should only be one Bingo ball with each

number, the correct type of collection is a set

Maps

• A map is a collection that establishes a relationship

between keys and values

• The implementation should provide an efficient way to

retrieve a value given its key

• There must be a one-to-one mapping from a key to a value

– each key must have only one value, but multiple keys can

have the same value

• Therefore, there isn’t necessarily a one-to-one mapping

from a value to a key

Map Entry Class

• To implement a map collection using any data structure, we

need a class for objects that link a key with its

corresponding value

MappingClass<K,V> Entry<K,V>

- key : K
- value : V
+ Entry(key : K, value : V)
+ usual setters/getters

{some data structure
containing Entry objects}
+ normal Map methods

KeyClass ValueClass

Map Entry Class

• The Entry class is not used outside its Map class

• The Entry class code is usually written as an inner class of

the Map class that it supports

The Comparator Interface

• In the Java Collections API, either the Comparator or

Comparable interface may be used

• A Comparator class object can be passed to the collection class’s

constructor to use in comparing

• The Comparator’s “compare” method takes two objects as

parameters and returns a value like the Comparable compareTo

method does (< 0, 0, or > 0 representing <, ==, or >)

• The compare method is not implemented within the key class

but uses two objects of that class

6

The Comparator Interface

• Implementing a Comparator for Strings that uses their length as

the basis for the comparison

public class StringComparator

implements Comparator<String>

{

public int compare(String s1, String s2)

{

return s1.length() – s2.length();

}

}

Java Collections API:
Implementing Sets and Maps

• The Java class library provides thorough and efficient

implementations of underlying binary search trees in these

two classes:

o TreeSet

o TreeMap

• Both of those classes can be used with either the normal

ordering of the elements (via the Comparable interface) or

via a Comparator

8

TreeSet<T>

• In a TreeSet, we store elements in an order determined
either by their natural ordering (based on their CompareTo
method) or an ordering based on a provided Comparator

• Each element stored in a TreeSet contains all of the data
associated with that object

• The TreeSet class implements a set using a Red/Black binary
search tree for efficiency in the add, contains, and remove
operations

9

TreeSet<T>

• Some of the TreeSet unique methods are:
TreeSet() // constructs a new set sorted according to

natural order of the objects

TreeSet (Comparator<T> c) // constructs a new set

sorted according to Comparator c

boolean add(T o) // adds the specified element to the

set if not already present

boolean contains(Object o) // returns true if this

object is present in the set

boolean remove(Object o) // removes this element from

the set if it is present

10

TreeMap<K,V>

• In a TreeMap, we separate the data being stored into a key and
the rest of the data (the value)

• Internally, node objects are stored in the tree

• Each node object contains

o a reference to the key

o a reference to the object containing the rest of the data

o two links to the child nodes

o and a link to the parent node

• The TreeMap class implements a map using a Red/Black binary
search tree

11

TreeMap<K,V>

• Some of the TreeMap unique methods are:
TreeMap () // constructs a new map sorted according

to natural order of the objects

TreeMap (Comparator<K> c) // constructs a new map

sorted according to Comparator c

V put(K key, V value) // associates the value with

the key

boolean containsKey(Object key) // returns true if the

map contains a mapping for key

boolean containsValue(Object value) // returns true if

the mapping contains a key value pair for this value

V get(Object key) // returns the value V mapped to the

key
12

Using Set/Map APIs with a
Comparator

• Instantiate the Comparator
Comparator<String> comp

= new StringComparator();

• Instantiate a TreeSet containing Strings
TreeSet<String> mySet

= new TreeSet<String>(comp);

• Instantiate a TreeMap with Strings as keys
TreeMap<String,ValueClass> myTree

= new TreeMap<String,ValueClass>(comp);

Set and Map Efficiency

• The TreeSet and TreeMap classes provide O(log n) access to

their data

• When the sort order is not important, there is a more

efficient way to implement sets and maps with a data

structure called a hash table

• A hash table provides approximately O(1) access to its data

and will be covered in CS310

