
More on Java Generics

• Multiple Generic Types

• Bounded Generic Types

• Wild Cards

• Raw Types versus Parameterized Types

• Meta-data / Annotations

• Reading: https://docs.oracle.com/javase/tutorial/

java/generics/index.html

Multiple Generic Types

• Multiple generic types in a class

• Example: TreeMap<K, V>

• The default TreeMap constructor assumes K implements
Comparable, but K is not specified K extends Comparable

• The overloaded TreeMap constructor with a Comparator
parameter does not assume it

Bounded Generic Types

• Bounded Generic Types

<T extends Class> is a bounded generic type

T must be Class or some subclass of Class

<T extends Interface> is also a bounded type

T must be an implementing class of Interface

• Note syntax is using extends for either:

implements (interface) or

extends (inheritance)

Bounded Generic Types

• Defining a class with a bounded type
public class Generic<T extends Comparable>

{ … }

• Using a class with a bounded generic type
Generic<Comparable> g1 =

new Generic<Comparable>();

Generic<String> g2 = new Generic<String>();

Generic<NotComparable> g3 =

new Generic<NotComparable>(); // error

Bounded Generic Types

• Lower Bound Generic Types

<T super Class> is a lower-bound generic type

T must be Class or some superclass of Class

• Defining a class with a lower bound type
public class Generic<T super Stack>

{ … }

• Using a class with a lower bound type
Generic<Vector> g4 = new Generic<Vector>();

Generic<Stack> g5 = new Generic<Stack>();

Bounded Generic Types

• But even though there is a superclass and subclass

relationship between the generic types involved, it is not a

valid widening conversion for classes parameterized with

related generic types

Bounded Generic Types

• Remember a class with a bounded generic type

class Generic<T extends Comparable>

Generic<Comparable> g1 = …

Generic<String> g2 = …

• However, assignment won’t work

g1 = g2; // is a compiler error

// Generic<String> is not

// a valid subtype of

// Generic<Comparable>

Wildcards
• However, we can get around some of the preceding

restrictions by using wildcards

• Wildcard Generic Types

<?> is an extended wildcard

same as <? extends Object>

<? extends T> is a bounded wildcard

? must be T or some subclass of T

<? super T> is a lower-bound wildcard

? must be T or some superclass of T

Wildcards

• Use as a variable type

Integer is a subtype of Number

List<Integer> is not a subtype of List<Number>

• However, with a wildcard we can get Integer elements out

of a List<? extends Number>
List<Integer> ints = Arrays.asList(1,2);

List<? extends Number> nums = ints;

for(Number n : nums)

System.out.println(n);

Wildcards

• Use as a type for a method parameter:
boolean addAll(Collections<? extends T> c)

• Another collection containing a subtype of T can be added

to a collection of type T
ArrayList<Comparable> c = new . . . ;

ArrayList<String> s = new . . . ;

c.addAll(s);

Wildcards

• We can’t use a wildcard in the class header where a dummy

generic type will need to be used in code
public class ClassName<?>

public class ClassName<? extends Number>

• How could we write lines of code that refer to the generic

type for this ? class?
? myQuestionMark = ... // compiler is 

public ? myMethod() // compiler is 

Evolution, not Revolution

• An important goal in the generic design was to ensure that
Java 4.2 legacy code would work with the Java 5.0 generic
library

• Java recognizes the un-parameterized type of each
parameterized class/interface in the library, e.g. Iterable
and Iterable<T>

• The parameterized types are subtypes of the corresponding
un-parameterized “raw” type used in the legacy code

Evolution, not Revolution

• Legacy code used “raw” un-parameterized types for its reference

variables pertaining to the now parameterized types in the Java

5.0 class library

ArrayList myList = new ArrayList();

• A value of a parameterized type can be passed where a raw type

is expected – a normal widening conversion

• A value of a raw type can also be passed where a parameterized

type is expected, but the compiler produces an “unchecked”

warning

Evolution, not Revolution

• You also get warnings on passing of object references

where type <T> is expected

• Use compiler switch –source 1.4 or add annotations to

the legacy code to suppress these warnings:

@SuppressWarnings(“unchecked”)

• But if you are editing the legacy source, why not just make

it generic instead?

Meta-data/Annotations

• In JDK 5.0, a dedicated annotation facility was added, probably

due to success of C#'s attributes

• One of the first practical uses of annotations is a as a way to

suppress compiler warnings

@SupressWarnings(“type of warning”)

• This allows the developer to signal a “respecting” compiler that

it should forgo a particular warning

• It is up to the compiler to make sense of whatever you put

inside the string, the only value mandated in Java Language
Specification is "unchecked"

Meta-data/Annotations

• Compilers as well as IDE's implement their own set of

warning types, e.g. the Eclipse IDE defines more than

NetBeans does

• See a compiler’s support with javac -X

• Sun JDK1.6.0_03 supports types : cast, deprecation, divzero,

empty, unchecked, fallthrough, path, serial, finally, overrides

Meta-data/Annotations

• The following code would get two warnings
public void uncheckedTest()

{
List nonGenericList = new ArrayList();
nonGenericList.add("Some string");
List<String> genericStringList =

(List<String>)nonGenericList;

}

warning: [unchecked] unchecked call to add(E) as

member of the raw type java.util.List

nonGenericList.add("Some string");

warning: [unchecked] unchecked cast
found : java.util.List
required: java.util.List

List genericStringList = (List)nonGenericList;

Meta-data/Annotations

• We can use “unchecked” to avoid warnings on unchecked
casts when using generics

• It can be applied in front of a type, a field, a method, a

parameter, a constructor as well as a local variable

@SuppressWarnings(“unchecked”)

public void uncheckedTest()

{ …

