
Java Language and Software
Development

• Programming Languages

• Java Program Structure

• Problem Solving

• Object-Oriented Programming

• Reading for this class: L&L, 1.4-1.6

What is a program?

• It consists of two components:

• Data (numbers, characters, true/false)

• Steps

• A program goes through a number of steps with
pieces of data to achieve a result:

• Printing text to screen

• Collecting information

• Performing calculations

• Example: Long Division

Programming Languages

• Computer programmers write programs for
computers using one or more programming
languages

• Some languages are better for one type of
program or one style of user interface than for
others

• You may have heard of some programming
languages: COBOL, Basic, Pascal, C/C++, Java,
Assembly Language, and Others

“Hello, World” Versions
• Java

public class Hello {

public static void main(String[] args) {
System.out.println("Hello World");
}

}

• Basic: 10 PRINT "HELLO WORLD"

• Fortran: PROGRAM HELLOWORLD

10 FORMAT (1X,11HHELLO WORLD)
WRITE(6,10)
END "HELLO WORLD"

• Ruby: puts“Hello World”

• C
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
printf("Hello, world\n");
return EXIT_SUCCESS;
}

• Scheme:
(display "Hello, World!")
(newline)

Source: http://c2.com/cgi/wiki?HelloWorldInManyProgrammingLanguages

Programming Languages

• A programming language specifies the words

and symbols that we can use to write a program

• A programming language employs a set of rules

that dictate how the words and symbols can be

put together to form valid program statements

• A programming language has both syntax and

semantics

6

Syntax and Semantics

• The syntax rules of a language define how we
can put together symbols, reserved words, and
identifiers to make a valid program

• The semantics of a program statement define
what that statement means (its purpose or role
in a program)

• A program that is syntactically correct is not
necessarily logically (semantically) correct

• A program will always do what we tell it to do,
not what we meant to tell it to do

7

Syntax vs. Semantics

• Everyday Language:

– Incorrect syntax: Ball the red is color the

– Incorrect semantics: The ball is the color three

– Alternative (not incorrect) syntax:

"Finish your training, you must" – Yoda

• Programming:

– Correct: int i = 34;

– Incorrect semantics: int i = "foobar";

– Incorrect syntax: i = 34

*However, the last example would be correct in
another language – e.g., Ruby

8

Language Levels

• There are four programming language levels:
– machine language

– assembly language

– high-level language

– fourth-generation language

• Each type of CPU has its own specific machine

language

• The other levels were created to make it easier

for a human being to read and write programs

Machine Language

http://pixabay.com/static/uploads/photo/2013/11/24/10/20/ball-216837_640.jpg

See
demo...

10

Programming Languages

• A program must be translated into machine language
before it can be executed

• A compiler is a software tool which translates source
code into a specific target language

• Often, that target language is the machine language
for a particular type of CPU

• The Java approach is somewhat different:
Incorporates an intermediate step

11

Java Translation

• The Java compiler translates Java source code into a

new representation called bytecode in the .class file

Foobar.java → Compiler → Foobar.class

• A specific machine's interpreter program, called the Java

Virtual Machine (JVM), reads bytecode and executes

machine-comprehensible instructions

Foobar.class (bytecode) → JVM → Program runs!

• Java programs can be run on any machine that has a

JVM, the latter of which fills the gap between high-level

Java language and the computer's machine code.

Java Program Structure

• In the Java programming language:
– A program is made up of one or more classes

– A class contains zero or more attributes

– A class contains one or more methods

– A method contains program statements

• These terms will be explored in some detail
throughout the course, less so in CS/IT114

• A Java application starts with a class containing
a method called main

• See Lincoln.java (page 29)

Basic Definitions

• Class: Primary building block of a Java program
(oversimplified, but adequate for our purposes)

• Attribute: A piece of information about some
Java entity.

• Method: A named set of instructions, relative to
some Java entity, to accomplish a common goal.
(We will be using methods, and writing some, to
an extent)

• Statement: A piece of code representing a
complete step in a program - usually, but not
always, ends in a semicolon (;)

Java Program Structure

• For now, each program of ours will consist of a
single class, which has a unique name – for
example, ClassName

• It is represented by a file called
ClassName.class

• We will obtain that file by compiling a program
file that we write, called ClassName.java

• Writing these program files so that they compile
successfully (and the program runs in the
intended manner) will require meticulous
attention to detail.

16

Java Program Structure

public class ClassName {

}

class header

class body

First, we have the outer code of ClassName.java

17

Java Program Structure

public class ClassName {

}

Then, we have the holder for your program code:

notice the

indentation

relative to the

class header?

public static void main (String[] args){

}

18

Java Program Structure

public class ClassName {

}

Finally, we have the program code itself:

public static void main (String[] args){

}

System.out.println ("Hello!");

23

Comments
• Comments in a program are called inline

documentation

• They should be included to explain the purpose of the
program and describe processing steps

• They do not affect how a program works

• Java comments can take three forms:

// this comment runs to the end of the line

/* this comment runs to the terminating

symbol, even across line breaks */

/** this is a javadoc comment */

(don't need this yet)

/*

This is the Hello code

*/

public class Hello { // class header

public /* ... */ static void main (String[] args){

System.out.println("Hello, world!");

}

}

System.out.// a statement println("Hello, world!");

But, don't comment out code
you want to keep!

Error!

25

Identifiers
• Identifiers are the words a programmer uses in a

program

• Rules:

– Can be made up of letters, digits, the underscore
character (_), and the dollar sign

– Identifiers cannot begin with a digit

– Case sensitive - Total, total, and TOTAL are different
identifiers

• By convention, programmers use different case
styles for different types of identifiers:

– title case for class names – Lincoln

– lower case for object or other variable names –
currentTemperature, limit

– upper case for constants – MAXIMUM

Identifiers

• Sometimes we choose identifiers ourselves
when writing a program (such as Lincoln)

• Sometimes we are using another programmer's
code, so we use the identifiers that he or she
chose (such as println)

• Often we use special identifiers called reserved
words that already have a predefined meaning in
the language

• A reserved word cannot be used in any other
way

27

Reserved Words

• The Java reserved words:

abstract

boolean

break

byte

case

catch

char

class

const

continue

default

do

double

else

enum

extends

false

final

finally

float

for

goto

if

implements

import

instanceof

int

interface

long

native

new

null

package

private

protected

public

return

short

static

strictfp

super

switch

synchronized

this

throw

throws

transient

true

try

void

volatile

while

28

public class Hello {

}

Hello.java

public static void main (String[] args){

}

System.out.println("Hello, world!");

Identifiers:
public

class

Hello

static

void

main

String

args

System

out

println

29

White Space

• Spaces, blank lines, and tabs are called white space

• White space is used to separate words and symbols in
a program. Extra white space is ignored

• A valid Java program can be formatted many ways

• Programs should be formatted to enhance readability,
using consistent indentation

• See Lincoln2.java (page 34)

• See Lincoln3.java (page 35)

public

class Hello { public static

void main (String[] args){

System.out.println("Hello, world!"); } }

This would be valid Java code
and compile just fine...but
please don't! :-)

31

Formatting Poorly

public class Foo{public static void main(String[] args){String
foo1="Barack Obama";String foo2="President";String foo3="The
United States of America"; System.out.println(foo1+" is the "+foo2+"
of "+foo3+".");}}

It compiles and runs fine, so what's wrong here?
 Hard to read (No use of spacing, indentation, tabs)

 Meaningless identifiers

 No commentary

Truly, a nightmare come true – for the next person who
has to maintain this code!

32

Formatting Well

public class PoliticianPrinter {

public static void main(String[] args) {

// Intialize String variables with information
String personName = "Barack Obama";
String personTitle = "President";
String countryName="The United States of America";

// Print the string
System.out.println(personName + " is the " + personTitle + " of " +
countryName + ".");

}

}

"Always code as if the person who ends up
maintaining your code will be a violent
psychopath who knows where you live."

-- Martin Golding

Grouping Statements

 Remember, main could have had as many

statements as we wanted

 We grouped the statements informally, in the

previous example, using white space

 Sometimes we may group them more formally,

in the form of a method, which provides for two

benefits:

 Conciseness: An individual segment of code can
be shorter because many commands are replaced
with a single command

 Reuse: Do not have to rewrite the same
statements over and over

Example: DrawFigures

 Recall DrawFigures1
 Many lines - "spaghetti code"

 Tedious (and potentially confusing) to read

 Then, DrawFigures2
 Better, because it breaks the code down into

related chunks and places them into methods

 The code inside main goes from 30 lines to 3!

 But, DrawFigures3 is better still
 Take repeated blocks of code to make even more

methods

 Thus, methods from DrawFigures2 are much
simpler than before

Problem Solving

• The purpose of writing a program is to solve a problem

• Solving a problem consists of multiple activities:

– Understand the problem

– Design a solution

– Consider alternatives and refine the solution

– Implement the solution

– Test the solution

• These activities are not purely linear – they overlap and
interact (for example, see the "iterative" diagram from the
previous lecture)

Problem Solving

• The key to designing a solution is breaking it
down into manageable pieces

• When writing software, we design separate
pieces that are responsible for certain parts of
the solution

• An object-oriented approach lends itself to this
kind of solution decomposition

• We will dissect our solutions into pieces called
objects and classes

Object-Oriented Programming

• Java is an object-oriented programming language

• As the term implies, an object is a fundamental entity in a
Java program

• Objects can be used effectively to represent real-world
entities

• For instance, an object might represent a bank account

• Each bank account object handles the processing and
data management related to that bank account

39

Objects

• An object has:

– state - descriptive characteristics (variable values)

– behaviors - what it can do (or what can be done to it)

• The state of a bank account includes its balance

• The behaviors associated with a bank account include
the ability to get the balance, make deposits, and make
withdrawals

• Note that the behavior of an object might change its
state, e.g. making a deposit will increase the balance

Classes

Class (The Conceptual)

• Is like a blueprint for...

• Has attributes that...

• Has methods that...

• The class that contains the main method represents the
starting point for a Java program

• The program can and usually does contain more classes
than just the one that contains the main method

Object (The Concrete)

• An object

• Define the state of each
object

• Define the behavior of
each object

Objects and Classes

A Class
(The Concept)

John’s Bank Account
Balance: $5,257.51

Three objects
(Three Instances
of the Concept)

Bill’s Bank Account
Balance: $1,245,069.89

Mary’s Bank Account
Balance: $16,833.27

Multiple objects
of the same class

BankAccount

- balance: float

+ getBalance(): float

+ deposit(float amount): bool

+ withdraw(float amount): bool

42

Java Program Structure
public class BankAccount

{

}

public float getBalance()

{

}

public boolean deposit(float amount)

{

}

public boolean withdraw(float amount)

{

}

method body

attribute definitionprivate float balance;

method body

method body

