
1

Interactive Applications (CLI) and Math

• Interactive Applications

• Command Line Interfaces

• The Math and Random classes

• Example: Solving Quadratic Equations

• Reading for this class: L&L, 3.4, 3.5

How input works
 The data will enter as a “stream”
 It is broken up by spaces

 Data is read in according to the type (integer,
decimal, string)

 12 24.7 hello goodbye hey[press Enter]

scan.nextInt(); => gets the 12

scan.nextDouble(); => gets the 24.7

scan.next(); (x3) => gets “hello”, “goodbye”, “hey”

scan.nextLine(); => gets the rest (nothing!)

Commands must be compatible!

3

Interactive Applications (CLI)

• An interactive program with a command line
interface contains a sequence of steps to:
– Prompt the user

– Get the user’s responses
– Process the data as input is received (or after)

• System.out.println(“Enter text:”);
int i = scan.nextInt();

String str = scan.next();

type variable = scan.nextType();

4

The Math Class
• The Math class is part of the java.lang package. It is

like String (and unlike Scanner) in that we do not have to
import it.

• The Math class contains methods that perform various
mathematical functions

• These include:

– absolute value

– square root

– exponentiation

– trigonometric functions

http://www.tutorialspoint.com/java/lang/java_lang_math.htm

5

The Math Class

• The methods of the Math class are static methods (also
called class methods)

• Static methods can be invoked through the class name – no
object of the Math class is needed. It is like an object
behavior but not tied to a specific object.

value = Math.cos(90) + Math.sqrt(delta);

int i = -654; System.out.println(Math.abs(i)); => 654

System.out.println(Math.pow(-65, 3)); ==> -274625.0

(Because the Math.pow method sends back a decimal)

Random int 1 to 10: (int)(Math.random()* 10) + 1

OR (int)(Math.ceil((Math.random()* 10))

Random

• The Random class is for creating random-
number generators

• Is part of java.util, so you have to import it:
import java.util.Random;

• Gives methods such as:

– nextFloat(): 0.0 <= x < 1.0

– nextInt(): any possible int value

– nextInt(int num): 0 <= x < num

– More versatile than Math.random()

7

Interactive Applications (CLI)

• Consider Quadratic.java
int a, b, c; // integer coefficients

Scanner scan = new Scanner(System.in);

System.out.println(“Enter coeff. A”);
a = scan.nextInt();

System.out.println(“Enter coeff. B”);
b = scan.nextInt();

System.out.println(“Enter coeff. C”);
c = scan.nextInt();

8

We have the input values, now what?

• To solve the quadratic equation, we need
to program in Java the formulas learned in
high school algebra:

discriminant = b squared – 4ac

roots = (-b + squareroot of discriminant)/2a

• How do we program those equations?

• We need to use

– The Math Class Library,

– Expression Evaluation, and

– Assignment

9

Solving Quadratic Equations
discriminant = Math.pow(b, 2) – 4.0 * a * c;

root1 = (-1.0*b + Math.sqrt(discriminant))/(2.0*a);

root2 = (-1.0*b – Math.sqrt(discriminant))/(2.0*a);

• However, the textbook’s program to solve for the
roots of a quadratic equation is deficient!

• The equations for calculating the roots are correct but

are not used correctly in the program

• It only gives correct answers so long as the

coefficients entered actually belong to a quadratic
equation with real roots

10

Solving Quadratic Equations

• User can enter any values for “a”, “b”, and “c”,
which can create special cases that the formula
cannot accommodate

• Let’s try a = 2, b = 3, and c = 4 (demo)
• What happened?

• Answer: A negative discriminant, which has no
real square root

discriminant = 3 * 3 – 4 * 2 * 4

discriminant = 9 – 32

discriminant = -23
The Math.sqrt method

cannot handle this!

11

Solving Quadratic Equations

• However, there is the “imaginary” number i (the
square root of -1)

In math: √-7 => i * √7
String: ಯi * ಯ + Math.sqrt(7); => ಯi * 2.6457513110645907ರ
Equation may have complex roots (e.g., 5 + i√7 and 5 –
i√7)

• How do we accommodate such user input?

• Answer: check discriminant value:

– Positive: Use given formula

– Negative: Construct complex root strings

– Zero: -b/2a (Need not print value twice!)

12

Solving Quadratic Equations

• Other possible problems:

– a = 0 (but not b): Formula divides by 2 * a, leading

to an error if a equals 0. (Equation is linear, not
quadratic, so the only root is the y-intercept)

– a and b (but not c) are 0: A horizontal line that

never touches the x-axis, so no roots

– All three are 0: The x-axis itself, so all values are

roots (in the sense that any value of x would satisfy
0*x^2 + 0*x + 0 = 0

• Our program must account for all these possibilities –
by making decisions!

13

Control Flow
• Up until now, each program has been a linear

sequence of steps

• First statement, second, and so forth...in
sequence

• To make decisions while solving a quadratic
equation, we need to direct the program to
different statements based upon
contingencies of user input

• We will see how to do that shortly

