
Data Comparisons and
Switch

• Data Comparisons
• Switch
• Reading for this class: L&L 5.3, 6.1-

6.2

2

Comparing Data

• When comparing data using boolean
expressions, it's important to understand
the peculiarities of certain data types

• Let's examine some key situations:

– Comparing double/float values for equality
– Comparing characters
– Comparing strings (alphabetical order)

3

Comparing Decimals

• You should rarely use the equality operator
(==) when comparing two decimals (float
or double)

• They are equal only if their underlying
binary representations match exactly

• Two decimals may be "close enough" even if
they aren't exactly equal, yet computations
often result in slight diferences that may be
irrelevant

4

How To Compare Decimals
1.Decide on a “maximum tolerable inequality”:

1.To determine the equality of two decimals, use
the following technique:

1.If the absolute value of the difference is less
than the tolerance, the if-condition will be
true, and the print statement will execute. (The
idea here is “equal enough”)

double d1, d2;
...
if (Math.abs(f1 - f2) < TOLERANCE){
 System.out.println ("Essentially equal");
}

final double TOLERANCE = 0.000001;

5

Comparing Characters
• As we've discussed, Java character

data is based on the Unicode character
set (See L&L Appendix C)

• Each character has a particular
numeric value, which creates an
ordering of characters

• Thus, we can use relational operators
on character data

• For example, ‘A' < 'J' == true
because 'A' has the smaller numeric
value in the Unicode set

6

Comparing Characters
• In Unicode, the digit characters (0-9) are

contiguous and in order of their numerical
value

• Likewise, the uppercase letters (A-Z) and
lowercase letters (a-z) are contiguous and
in alphabetical order

• Notice that uppercase precedes lowercase!

Characters Unicode Values

0 – 9 48 through 57

A – Z 65 through 90

a – z 97 through 122

7

Comparing Characters

• Therefore, we can determine whether a
character is a digit, a letter, etc.

if (character >= ‘0’ && character <= ‘9’){

System.out.println (“Yes, it’s a digit!”);

}

 else if ((character >= ‘A’ && character <= ‘Z’) ||
 (character >= ‘a’ && character <= ‘z’)){

 System.out.println (“It’s a letter!”);

 }

 else{

 System.out.println(“Something else entirely!”);

 }

Code to Remember
 public class … { …. }
 public static void main (String[] args){...}
 System.out.println(...);
 System.out.print(...);
 Scanner scan = new Scanner(System.in);

(and “import java.util.Scanner;” at top)
 Math.abs(...) Math.pow(..., …)
 (int) (Math.random() * MAX)
 Random random = new Random(); (and

“import java.util.Random;” at top)
 random.nextInt() random.nextDouble();

9

Comparing Strings
• Remember that in Java a string is an object

• We cannot use the == operator to determine if the
values of two strings are identical (character by
character)

• The equals method can be called with strings to
determine whether this is the case.

• The equals method returns a boolean result

if (name1.equals(name2)){
 System.out.println ("Same name");
}

10

Comparing Strings

• We cannot use the relational operators to compare
strings

• The String class contains a method called
compareTo to determine if one string comes before
another

• A call to name1.compareTo(name2)

– returns zero if name1 and name2 are equal (contain the same
characters)

– returns a negative value if name1 is less than name2

– returns a positive value if name1 is greater than name2

11

Comparing Strings
if (name1.compareTo(name2) < 0){
 System.out.println (name1 + "comes first");
}
else{
 if (name1.compareTo(name2) == 0){
 System.out.println ("Same name");
 }
 else{
 System.out.println (name2 + "comes first");
 }
}

• The comparison is based on characters'
numeric values, so it is called a
lexicographic ordering

12

Lexicographic Ordering
• Lexicographic ordering is not strictly

alphabetical

• For example, the string "Great" comes
before the string "fantastic". In Unicode,
the uppercase letters have lower values than
lowercase, so ‘G’ is technically less than ‘f’

• Also, short strings come before longer
strings with the same prefix

• "book" comes before "bookcase", but
"Bookcase" comes before both!

13

The switch Statement
• The switch statement matches program

statements to specific int or char values

• The switch statement evaluates an integral
value, then attempts to match the result to
one of several possible cases

• Each case contains a value and a statement
list

• The flow of control transfers to the first
case value that matches. We “switch” on a
particular value

14

The switch Statement

• The general syntax of a switch statement:

switch (expression)
{
 case value1 :
 statement-list1
 case value2 :
 statement-list2
 case value3 :
 statement-list3
 case ...
 default:

...
}

switch
and
case
are

reserved
words

If expression
matches value2,
control jumps
to here

15

An example switch statement
System.out.print(“You will belong to ”);
switch (studentId % 4)
{
 case 0:
 System.out.println(“Gryffindor...but don't let “ +
 “it go to your head!”);
 break;
 case 1:
 System.out.println(“Ravenclaw...nerd!”);
 break;
 case 2:
 System.out.println(“Hufflepuff...nah, too easy!”);
 break;
 default:
 System.out.println(“Slytherin...NOW we're talking!”);
 break;
}

16

The switch Statement
• The break statement causes us to leave the
switch statement. Otherwise, the flow of
control would continue into the next case

• Sometimes this may be appropriate, but we
usually only want to go to one case

• The default case is where we go when no
other case matches the switch value. If there
is no default, then we just exit the switch
statement without executing anything.

• Whether you need a default case depends
on what your program is doing at that time.

17

An example without breaks
switch ((int)(age / 10.0))
{
 case 0:
 case 1:
 System.out.println(“Gather ye rosebuds while ye may”);
 break;
 case 2:
 System.out.println(“Enjoy the bloom of youth”);
 break;
 case 3:
 case 4:
 case 5:
 System.out.println(“Ahh, the wisdom of age!”);
 break;
 default:
 System.out.println(“So...any stories about Fortran?”);
 break;
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

