Data Comparisons and
Switch

* Data Comparisons
* Switch

* Reading for this class: L&L 5.3, 6.1-
6.2

Comparing Data

* When comparing data using boolean

expressions, it's important to understand
the peculiarities of certain data types

* Let's examine some key situations:

— Comparing double/float values for equality
— Comparing characters

— Comparing strings (alphabetical order)

Comparing Decimals

. You should rarely use the equality operator
==) when comparing two decimals (float
or double)

* They are equal only if their underlying
binary representations match exactly

* Two deC|maIs may be "close enough” even if
they aren't exactly equal, yet computations
often result in slight differences that may be
irrelevant

How To Compare Decimals

1.Decide on a "maximum tolerable inequality”:
final double TOLERANCE = 0.000001;

1.To determine the equality of two decimals, use
the following technique:

double dl, d2;

if (Math.abs(fl - f2) < TOLERANCE) {
System.out.println ("Essentially equal');

}

1.If the absolute value of the difference is less
than the tolerance, the if-condition will be
true, and the print statement will execute. (The
idea here is “equal enough”)

4

Comparing Characters

* As we've discussed, Java character
data is based on the Unicode character
set (See L&L Appendix C)

* Each character has a particular
numeric value, which creates an
ordering of characters

* Thus, we can use relational operators
onh character data

* For example, ‘A' < 'J' == true
because 'A' has the smaller numeric
value in the Unicode set 5

Comparing Characters

* In Unicode, the digit characters (0-9) are
contiguous and in order of their numerical

value

* Likewise, the uppercase letters (A-Z) and
lowercase letters (a-z) are contiguous and

in alphabetical order

Characters

Unicode Values

48 through 57

Q7 thraiiaoh 1929

rasel

Comparing Characters

* Therefore, we can determine whether a
character is a digit, a letter, etc.

if (character >= ‘0’ && character <= '9’){
System.out.println (“Yes, it’s a digit!”);
}

else if ((character >= ‘A’ && character <= ‘Z’) ||
(character >= ‘a’ && character <= ‘'z’)) {

System.out.println (“"It’'s a letter!”);
}
else{

System.out.println(“"Something else entirely!”);

Code to Remember

publicclass ... { }

public static void main (String[] args){...}
System.out.println(...);
System.out.print(...);

Scanner scan = new Scanner(System.in);
(and “import java.util.Scanner;” at top)

Math.abs(...) Math.powc(..., ...)

(int) (Math.random() * MAX)

Random random = new Random(); (and
“import java.util.Random,” at top)

random.nextIint() random.nextDouble();

Comparing Strings
Remember that in Java a string is an object

We cannot use the == operator to determine if the
values of two strings are identical (character by
character)

The equals method can be called with strings to
determine whether this is the case.

The equals method returns a boolean result

if (namel.equals (name2)) {
System.out.println ("Same name") ;

}

Comparing Strings

 We cannot use the relational operators to compare
strings

* The string class contains a method called

compareTo to determine if one string comes before
another

* A call to namel.compareTo (name?2)

— returns zero if namel and name?2 are equal (contain the same
characters)

— returns a negative value if name1l is less than name?2

— returns a positive value if namel is greater than name?2

10

Comparing Strings

if (namel.compareTo (name2) < 0) {
System.out.println (namel + "comes first");

}

else{
if (namel.compareTo (name2) == 0) {
System.out.println ("Same name") ;
}
else{

System.out.println (name2 + '"comes first");

}
}

* The comparison is based on characters'
numeric values, so it is called a
lexicographic ordering y

Lexicographic Ordering

Lexicographic ordering is not strictly
alphabetical

For example, the string "Great™ comes
before the string "fantastic". In Unicode,
the uppercase letters have lower values than
lowercase, so ‘G’ is technically less than ‘f’

Also, short strings come before longer
strings with the same prefix

"book" comes before "bookcase", but
"Bookcase" comes before both!

12

The switch Statement

The switch statement matches program
statements to specific int or char values

The switch statement evaluates an integral
value, then attempts to match the result to
one of several possible cases

Each case contains a value and a statement
list

The flow of control transfers to the first
case value that matches. We “switch” on a
particular value

13

The switch Statement

* The general syntax of a switch statement:

switch

an
ca

are

reserved
words

switch (expression)

d {
4::i; case valuel :
se

statement-listl
case value?2 :
statement-list2
case value3 :
statement-1list3
case
default:

If expression
matches value2,
control jumps

to here

14

An example switch statement

System.out.print(“You will belong to ") ;
switch (studentId % 4)
{
case O0:
System.out.println(“Gryffindor...but don't let “ +
“it go to your head!”);
break;
case 1:
System.out.println (“Ravenclaw. . .nerd!”);
break;
case 2:
System.out.println (“Hufflepuff...nah, too easy!”);
break;
default:
System.out.println(“"Slytherin.. .NOW we're talking!”);
break;

The switch Statement

The break statement causes us to leave the
switch statement. Otherwise, the flow of
control would continue into the next case

Sometimes this may be appropriate, but we
usually only want to go to one case

The default case is where we go when no
other case matches the switch value. If there
IS N0 default, then we just exit the switch
statement without executing anything.

Whether you need a default case depends
on what your program is doing at that time.

16

An example without breaks

switch ((int) (age / 10.0))

{

case 0:
case 1:

System.

break;
case 2:

System.

break;
case 3:
case 4:
case 5:

System.

break;
default:

System.

break;

out.println(“Gather ye rosebuds while ye may”);

out.println(“Enjoy the bloom of youth”);

out.println (“Ahh, the wisdom of age!”);

out.println(“So...any stories about Fortran?”);

17

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

