Exceptions

Exceptions

Throwing Exceptions

Handling Exceptions

Try statement and catch / finally clauses
Checked and unchecked exceptions
Throws clause

Reading for this lecture: L&L 10.1 — 10.6



Exceptions

An exception is an object that flags/ describes the
occurrence of an unusual or erroneous situation

Java has a predefined set of Exception classes for
errors that can occur during execution

— e.g ArithmeticException
We can write our own Exception classes if needed

When code in a program detects an “impossible
condition”, it can throw a defined exception object

The manner in which exceptions are processed is
an important design consideration



Throwing Exceptions

* For code to “throw™ an exception:
— It must detect the “impossible” situation
— Instantiate and “throw” an exception object

* Example (throw is a Java reserved word):

1f (boolean logic to detect impossible situation)

throw new NameOfException (“text to print”);

* Some Java statements or methods in the
class library may throw exceptions this way



Handling Exceptions

* A program can deal with an exception in one
of three ways:

—ignore it (Let the JVM shut down the program)
— handle it where it occurs
— handle it at another place in the program
* If we ignore it, we get something like this in

the interactions pane (See Zero.java):
java.lang.ArithmeticException: / by zero

at Zero.main(Zero.java:17)

at sun.reflect.NativeMethodAccessor...



The try Statement / catch Clause

* To handle an exception in a program, the line that
may throw the exception is executed within a try
statement followed by one or more catch clauses

* Each catch clause has an exception type and
reference name and is called an exception handler
* |f an exception occurs,

— Processing stops in the body of the try statement

— Processing continues at the start of the first catch
clause matching the type of exception that occurred

* The reference name can be used in the catch
clause to get information about the exception



The finally Clause

* Atry statement can have an optional clause
following the catch clauses, designated by the
reserved word finally

* The Java statements in the finally clause are
always executed

— If no exception is generated, the statements in the
finally clause are executed after the statements in the
try block complete

— If an exception is generated, the statements in the
finally clause are executed after the statements in the
appropriate catch clause complete



Example of try-catch-finally

try
{

System.out.println(Integer.parselnt (string)) ;

}

catch (NumberFormatException e)

{

System.out.println (“Caught exception: ” + e);

}
finally

{

System.out.println (“Done.”) ;



Exception Propagation

An exception can be propagated up to the
caller to be handled at a higher level if it is
not appropriate to handle it where it occurs

Exceptions propagate up through the
method calling hierarchy until they are
caught and handled or until they reach the
level of the main method and/or JVM

See Propagation.java (page 546)
See ExceptionScope. java (page 547)

8


file:///Users/development/Documents/umbcs_materials/public_html/teaching/cs110/lectures/ignore/..%2Fexamples%2Fchap10%2FPropagation.java
file:///Users/development/Documents/umbcs_materials/public_html/teaching/cs110/lectures/ignore/..%2Fexamples%2Fchap10%2FExceptionScope.java

Checked/Unchecked Exceptions

An exception is considered to be either
checked or unchecked

ARunTimeException orits decendents
such as ArithmeticException,
NullPointerException, etc are the
only ones considered to be unchecked

All other exceptions are considered to be
checked

Many of the checked exceptions are
related to input / output, e.g.
IOException



Checked Exceptions

If a method can generate a checked exception,
it must have a throws clause in its header

(Note: “throws” is a different reserved word)

If method1 calls method2 that has a throws
clause in its method header, method1 must:
— Use try-catch around the call to method?2

OR
— Have a throws clause in its own method header
The compiler will issue an error if a checked

exception is not caught or listed in a throws
clause



Example of the throws clause

public class FileDisplay

{

public FileDisplay () throws IOException

{

Scanner scan = new Scanner (System.in);
System.out.println ("Enter name of file");
File file = new File(scan.nextlLine()):;

// this line may throw an IOException
// and its not inside a try statement
scan = new Scanner (file);



Unchecked Exceptions

* An unchecked exception does not require
explicit handling

* Code or calls to a method that may generate
an unchecked exception can be put inside a
try—-catch statement, but that is optional



	Exceptions
	Slide 2
	Throwing Exceptions
	Handling Exceptions
	The try Statement / catch Clause
	The finally Clause
	Example of try-catch-finally
	Exception Propagation
	Checked/Unchecked Exceptions
	Checked Exceptions
	Example of the throws clause
	Unchecked Exceptions

