TCP/IP

- Model and Layers
- Bits and Number Bases
- IPv4 Addressing
- Subnetting
- Classless Interdomain Routing
- IPv6

Model and Layers

- The OSI model consists of seven layers:
>7: Application
>6 : Presentation
>5 : Session
>4: Transport
>3: Network
>2: Data Link
>1: Physical

Model and Layers

- The OSI model has a protocol stack, but we use it primarily as a conceptual reference.
- In contrast, the TCP/IP protocol stack has been much more widely adopted.
- It is divided into four layers -- Application, Transport, Internet, and Network Interface (a.k.a. Link) -- that more or less "map onto" the OSI layers.

Model and Layers

- TCP/IP Layers:
-4) Application: Deals with the applications that process network requests, along with their associated ports.
- A port is an address to which you send data to be received...
> by a particular application...
> for processing.
- You might think of it as a transport-layer address.
- Transport protocols like $\underline{T C P}$ and $\underline{U D P}$ use 65,536 different ports, which can be grouped into three categories...

Model and Layers

- Port types:
> "Well-known": 1-1023
> Registered: 1024-49151
> Private: 49152-65535
- The well-known ports are used by some of the more common networking applications, such as...
> Port 22: Secure Shell (SSH)
> Port 25: Simple Mail Transfer Protocol (SMTP)
> Port 80: Hypertext Transfer Protocol (HTTP)
> Port 443: Secure HTTP
- See Table 6-4 for more such examples.

Model and Layers

- 3) Transport: Responsible for type of connection between hosts and acknowledgments of data sent/received.
- The two main transport-layer protocols are TCP and UDP, which are connection-oriented and connectionless, respectively
- Transport Control Protocol (TCP) is connection-oriented, where it initiates/confirms a connection, manages transfer, and closes said connection.
- This begins with a 3-packet sequence (each is a type of packet):
> SYN: Synchronizing
* From Host A to B, attempting connection
* Sequence number (x) for tracking packets (SEQ\#)
* Length of zero because it contains no data (LEN)

Model and Layers

> SYN ACK: Synchronizing Acknowledgement
$:$ From Host B to A , acknowledging package from A

* Sequence number (y)
* Acknowledgement number ($x+1$), also called ACK\#

Ack: Acknowledgement

* From Host A to B
* Sequence number ($x+1$)
* Acknowledgement number $(y+1)$
- This is called a "handshake", after which point data packets are transferred.

Model and Layers

- Connection is terminated via a 4-packet sequence, where each host:
> Sends a FIN packet...
> ...and receives an ACK packet.
- The User Datagram Protocol (UDP) is connectionless:
> A packet is sent from a source to a destination.
> There is no acknowledgement from the other side.
> Transfer continues until the source stops sending or the destination stops accepting.

Model and Layers

- 2) Internet: The addressing and routing of data packets
- Internet Protocol (IP): Defines addressing scheme for sources and destinations of data packets sent within or between networks
- Address Resolution Protocol (ARP) : Associating IP addresses with MAC addresses
- Internet Control Message Protocol (ICMP): Data flow control and diagnostics.
-1) Network Interface, or Link
- LAN segments
- WAN connections

Bits and Number Bases

- Numbers are expressed in bases, where...
- The base is the number of possible values a digit can have.
- The range of values for a digit will be zero through the base minus one.
- Examples:
- Decimal: 0-9
-Binary: 0-1

Bits and Number Bases

- Conversion: You calculate the value of the number by multiplying each digit by exponents of the base.
- Generally, you start where the right-most digit
- Binary-to-Decimal: 10011

Digit	$\mathbf{1}$	$\boldsymbol{0}$	$\boldsymbol{0}$	$\mathbf{1}$	$\mathbf{1}$
Exponent	$* \mathbf{2}^{4}$	$* \mathbf{2}^{\mathbf{3}}$	$\boldsymbol{*} \mathbf{2}^{\mathbf{2}}$	$* \mathbf{2}^{\mathbf{1}}$	$* \mathbf{2}^{\boldsymbol{1}}$
Product	16	0	0	2	1
SuM	16	16	16	18	19

Bits and Number Bases

- Decimal-to-Binary: 719
- Divide the number by two
- Place the remainder on the end
- Repeat with the quotient, placing the remainder before the previous digit.

Value	Quotient	Remainder
719	359	$\mathbf{1}$
359	179	$\mathbf{1}$
179	89	$\mathbf{1}$
89	44	$\mathbf{1}$
44	22	$\mathbf{0}$
22	11	$\mathbf{0}$
11	5	$\mathbf{1}$
5	2	$\mathbf{1}$
2	1	$\mathbf{0}$
1	0	$\mathbf{1}$

- Do this until you get a quotient of zero.

$\begin{array}{llllllllll}1 & 0 & 1 & 1 & 0 & 1 & 1 & 1\end{array}$

Bits and Number Bases

- Hexadecimal:

- Values are 0 through 15
- Digits are 0-9, with 10-15 represented by A through F
- A hex digit is equivalent to a quartet(4 bits)
- Example: $719 \rightarrow 1011001111 \rightarrow 2 \mathrm{C}$
- This way, you can easily convert back and forth between the two

Bits and Number Bases

- A number expressed in binary digits is a bit string, and you can think of them as being ON (1) or OFF (0)
- For example:
- Selecting bits:

- Sometimes, you will want to "turn" some bits on or off
- This will be the case in scenarios where individual bits or bit sequences in the string have meaning, in their own right.

Bits and Number Bases

- This can be accomplished by using a bit mask, along with bitwise operations.
- A bit mask is simply a bit string, where the different bits or bit sequences have special meaning
- A bitwise operation acts upon a bit pair to produce 0 or 1, and we will look at two of them:
- OR is used to turn bits on
- AND is used to turn bits off

Bits and Number Bases

- OR operation:
- Any bit or 1 is turned/left ON
- In contrast, any bit or 0 is simply left unchanged

Bit		Mask		Result
1	OR	1	1	(if zero, would have been)
0	OR	1	1	Turned ON
1	OR	0	1	Unchanged
0	OR	0	0	Unchanged

- If you use a bit mask with OR , it will turn some bits on while keeping the others as they were.

Bits and Number Bases

- AND operation:
- Any bit and 0 is turned/left OFF
\circ In contrast, any bit and 1 is simply left unchanged

Bit		Mask		Result
1	AND	1	1	Unchanged
0	AND	1	0	Unchanged
1	AND	0	0	Turned OFF
0	AND	0	0	Turned OFF (if zero, would have been)

- If you use a bit mask with AND, it will turn some bits off while keeping the others as they were.

Bits and Number Bases

- Let's look at an example:
- Our original bit string:

- Bit string's decimal value: 719

○A bit mask: $\begin{array}{llllllllllll}1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & \text { (992) }\end{array}$

Mask applied with OR

1111100000
(992)

First 5 bits are turned ON

(1007)

Mask applied with AND

IPv4 Addressing

- IP addressing allows hosts and other devices to have routable addresses, both in LANs and within wider networks -- most notably the Internet.
- MAC addresses provide for forwarding within a LAN, but IP addresses let us extend beyond that.
- The predominant version of IP today is IPv4, though we will cover IPv6 later on.
- IPv4 addresses are divided into five classes, indicated by letters A-E

IPv4 Addressing

```
Class A: 0.0.0.0 - 127.255.255.255
Class B: 128.0.0.0 - 191.255.255.255
Class C: 192.0.0.0 - 223.255.255.255
Class D: 224.0.0.0 - 239.255.255.255
Class E: 240.0.0.0 - 254.255.255.255
```

- We will primarily be using the first three classes, though Class D is relevant to Chapter 9, "Routing Protocols".
- These classes are useful for demonstrative purposes, though the classification system is now outdated...

IPv4 Addressing

- An IPv4 address is expressed in 32 bits:
- In theory, this allows for $\mathbf{2}^{32}$, or $\mathbf{4 2 9 4 9 6 7 2 9 6 , ~ p o s s i b l e ~ I P s ~}$
- Each octet (8-bit chunk) will have a value in the range 0-255
- Normally, you will see IP addresses expressed in decimal form, where the octets' values are separated by periods.
- Example: www.google.com
- Decimal: 146.115.22.166
- Binary: 10010010011100110001011010100110

IPv4 Addressing

- Generally, the bits of an IP address are divided into two parts that, in combination, give the full network location of a particular host.
- The network bits comprise the first part of the longer bit string, and they convey the location of the network where the host resides.
- Following are the host bits, which indicate the location of the host within the network.
- Traditionally, each octet in an IPv4 address contains either network bits or host bits, according to address class...

IPv4 Addressing

See also Figure 6-13

- Depending on the number of host bits (vs network bits), different classes of networks will have a different possible number of hosts per network -- specifically, two raised to the power of number of host bits.

IPv4 Addressing

- Within each class, some IPs are designated as private:

Class A: 10.0.0.0-10.255.255.255
Class B: 172.16.0.0 - 172.31.255.255
Class C: 192.168.0.0-192.168.255.255

- These are for internal networks, or intranets, such as...
- The IT Lab's inner network
- A home network
- Private IP addresses are not routable over the Internet!

IPv4 Addressing

- On a wider level, the Internet Assigned Number Authority (IANA) is responsible for the allocation of IP addresses.
- However, it deleqates this task to regional Internet registries (RIRs), who allocate addresses according to geographical location.
- In North America, the American Registry for Internet Numbers (ARIN) assigns IP addresses.
- Large entities like ISPs and universities are allocated blocks of IP addresses to further assign as they choose.

Subnetting

- A network can be partitioned into smaller entities called subnets.
- These create a hierarchical network structure.
- Subnets are separated at layer 3, in the sense that you use IP and routing to move between them
- Example: You have a network at address 192.145.17.0

Subnetting

- This network, however, might be divided into 4 subnets:

```
192.145.17.0 (IP range: 192.145.17.0 - 192.145.17.63)
192.145.17.64 (IP range: 192.145.17.64 - 192.145.17.127)
192.145.17.128 (IP range: 192.145.17.128 - 192.145.17.191)
192.145.17.192 (IP range: 192.145.17.192 - 192.145.17.255)
```

- Each such subnet is logically independent of the others.
- Traffic from one subnet to another would pass through a router.

Subnetting

- Subnets within a network are established by declaring a space of subnet bits:
- These subnet bits are borrowed from the host bits
- Together with the network bits, they establish the identity of the network and subnet
- Those bits also become the basis of a subnet mask
- The material that follows will be especially pertinent to Lab 8 and Homework 8.

Subnetting

- Consider the subnets -- in particular, their fourth-octet binary values:

$$
\begin{aligned}
& 0 \text { : } 00000000 \\
& \text { 64: 01000000 } \\
& 128 \text { : } 10000000 \\
& \text { 192: } 11000000
\end{aligned}
$$

- Notice that the only bits that vary are the first two.
- This is because two bits were borrowed -- from the host bits -- to serve as subnet bits.

Subnetting

- This is where the math starts to come in...
- Let's identify two variables
- x (\# of bits borrowed from host portion)
- Y (\# of total host bits, by address class)
- Based on this, we can calculate two possible values:
- Number of subnets: $\mathbf{2}^{\text {x }}$
- Number of possible IPs per subnet: $2^{\mathrm{y}^{-\mathrm{x}}}$
- For 2 subnet bits, we get 4 subnets, with 64 IPs each...

Subnetting

- For each subnet - such as 192.145.17.64 - two of the possible IPs are reserved for special uses:
- The subnet address: (192.145.17.64)
- All host bits are zeroes (64: 01000000)
- The IP identity of the subnet itself
- The broadcast address: (192.145.17.127)
- All host bits are ones (64: 01111111)
- Data sent to this address is broadcast to all hosts within the subnet
- Thus, \# of possible hosts per subnet equals $\underline{\underline{2}}^{y^{-x}}-2$

Subnetting

- To distinguish the net and subnet portion of an IP address from the host portion, you will apply a subnet mask
- A subnet mask is a 32-bit (four-octet) value that resembles an IP address when expressed in decimal form.
- The first \mathbf{N} bits are all set to a value of one, where \mathbf{N} is equal to the number of network and subnet bits.
- You apply a subnet mask to a network address by AND-ing the two (see previous slides about bit masking).

Subnetting

- In the example above, where we had the network 192.145.17.0...
- It is a Class C address, so there are $\mathbf{2 4}$ network bits
- In addition, we borrow two of the host bits so that we can have four subnets
- Thus, in our subnet mask, the first 26 bits are set to one
- Binary: 11111111.11111111.11111111.11000000
- Decimal: 255.255.255.192
- If 192.145.17.0 the network was not subnetted, at all, then we would have a mask of 255.255 .255 .0 (first 24 bits)

Subnetting

- We will look at another example:
- What we know:
- IP address: 172.27.213.94
- Subnet mask: 255.255.240.0
- So, what is the subnet address?
- To start with, let's put our IP address and subnet mask into binary form:
- Addr: 10101100.00011011.11010101.1100001
- Mask: 11111111.11111111.11110000.0000000

Subnetting

- If we AND the bits...
10101100.00011011.11010101. 1100001 11111111.11111111.11110000.0000000
...then we get this result:
10101100.00011011.11010000.0000000
- So, the subnet is 172 .27.208.0

Subnetting

- The lab will ask you to do such things as:
- Calculating the subnet of an IP address, by applying a subnet mask
- Determining a subnet mask, based upon IP address class and the number of subnets to be established
- Given a particular subnet mask...
- How many subnets?
- What are the subnet address and broadcast address for each subnet?
- How many possible hosts per subnet?
- This, of course, leads us into the topic of CIDR...

Classless Interdomain Routing

- So far, we have been looking at classful addressing, in which a network is simply defined by the first one, two, or three octets -- depending on the address class.
- That way, the network would have a range of possible IPs, according to the number of host bits.
- For example, a Class A network has 24 host bits, allowing for $\mathbf{2}^{\mathbf{2 4}}$ possible addresses within it
- The problem? Lots of unused IPs!

Classless Interdomain Routing

- What if a Class A network did not need all $\mathbf{2 4}^{\mathbf{2 4}}$ possible addresses?
- This is part of why classful addressing is now obsolete.
- In its place, we now have the practice of supernetting, which lets us combine smaller networks (or subnets) into larger networks.
- For this, we use classless interdomain routing (CIDR) notation to express the subnet mask in a much shorter form: A backslash, followed by the number of bits.

Classless Interdomain Routing

- CIDR notation example:
- A subnet mask of 255.255.255.0 would be expressed as /24
- If you have a subnet at address 172.27 .208 .0 with a netmask of 255.255.240.0
○ ...the CIDR notation would be 172.27.208.0/20
- Just as you might partition a network into subnets by borrowing host bits - networks can be combined by borrowing network bits.

Classless Interdomain Routing

- Example: Networks 172.21.0.0, 172.22.0.0, and 172.23.0.0
- Networks 172.21.0.0, 172.22.0.0, and 172.23.0.0, being Class B, have a subnet mask of 255.255 .0 .0 or $\underline{116}$
- However, those IPs share the first 14 bits 10101100.000101xx. Xxxxxxxx. XXXXXXXX
- Therefore, those could be treated as part of a larger network -- a supernet -- of $172.20 .0 .0 / 14$

Classless Interdomain Routing

- Multiple classful networks, arouped together as a supernet, are also called a CIDR block.
- While classful IP addressing would limit networks to certain sizes by allocating address space 1 octet (8 bits) at a time, CIDR allows for a much more flexible allocation of IP ranges.
- This way, you do not have to allocate IP addresses to a network beyond its needs.

Classless Interdomain Routing

Source: https://upload.wikimedia.org/wikipedia/commons/2/26/CIDR_Address.svg

Classless Interdomain Routing

- When grouping subnets into a CIDR block, they must resolve to the same IP when the subnet mask is applied to them. For example...
172.20.0.0/14
172.21.0.0/14
172.22.0.0/14
172.23.0.0/14
- ...would not be a problem because the /14 mask resolves them to the same value of 172.20.0.0

Classless Interdomain Routing

- However, these would not work as a CIDR block....
172.22.0.0/14
172.23.0.0/14
172.24.0.0/14
172.25.0.0/14
- ...would be problematic because the mask resolves some to 172.20 .0.0 and others to 172.24 .0.0

IPv6

- IPv4 addressing, using 32 bits, allows for roughly $\underline{4.3}$ billion unique IP addresses.
- As the Internet grows and more devices are connected to it, this number is becoming insufficient.
- This is where IPv6 (also known as IPng) comes in.
- IPv6 addressing uses 128 bits -- which allows for 2^{128} possible addresses

IPv6

-Whereas IPv4 addresses are usually written in dotted decimal form (e.g., 192.168 .0.1), IPv6 addresses are expressed in hexadecimal digits -- separated by colons.

- Example: 9b32:e6da:d14f:6698:a9e5:7fae:1ba2:ed81
- The example would be considered a full IPv6 address because none of the hex digits are zero.
- When some of the digits are zeroes, there may be ways to "compress" the zeroes to shorten the address.

IPv6

- Zero compression: Replace consecutive zeroes with two colons
- From: 9b32:0000:0000:0000:a9e5:7fae:1ba2 :ed81
-To: 9b32::a9e5:7fae:1ba2:ed81
- Leading zero compression: For individual quartets, omit leading zeroes

-From: 9b32:000a:d14f:0698:00e5:7fae:0002:ed81
○To: 9b32: $\underline{a}: d 14 f: \underline{698}: \underline{e 5}: 7 f a e: \underline{2}: e d 81$

IPv6

- Both compression types:
- From: 9b32:0000:0000:0000:00e5:7fae:0002:ed81
- To: 9b32::e5:7fae:2:ed81
- To recover the original IPv6 address from its compressed form...
- Start with the rightmost digit (of the latter)
- Place each into their appropriate slots, from right to left
- Fill in zeroes as needed.

IPv6

- To convert an IPv4 address (172.27.213.94) to IPv6:
- Convert the 32-bit address to 2 quartets of hexadecimal digits

ac1b d55e

- Separate the quartets by a colon ac1b:d55e
- Place two colons at the start, to indicate the leading zeroes: :̊ac1b:d55e

IPv6

- IPv6 addresses belong to three categories:
- Unicast: Associated with a single network interface controller on a networked device.
- Multicast: Indicates a group of devices, and data sent to such an address will be sent to the entire group.
- Anycast: Comes from a list of addresses.
- Although IPv6 allows for a much better range of addresses, IPv4 is near-universal and will be in play for a long time to come.

IPv6

- There are a number of technologies out there to facilitate the transition to IPv6.
- One such technology is the 6to4 prefix, which allows IPv6 devices to use IPv4 networks.
- This involves the use of special 6to4 devices that do the routing required.
- A 32-bit IPv4 address will be included within the larger 128bit IPv6 address

IPv6

- Until IPv6 becomes more common, there are other solutions out there for the issue of limited IPv4 addresses.
- For example, a private IP address -- not being routable over the Internet -- can be used by many different hosts -- so long as it is unique within a private network.
- In the IT Lab: $10.0 \cdot 0 \cdot 0 / 24$ addresses
- On home networks: $\underline{192.168 .0 .0}$
- When hosts on private networks need Internet connectivity, they may use Network Address Translation (NAT) -- where the router replaces the inner, private source IP with its own outer, public one.

