
Preliminaries and Intro. Material

 Course Documents

 Taking Notes

 Cheating

 Accommodations

 E-mail

 Attendance

 Time and Other Considerations

 Programs, Software, and Software Development



Course Documents

• Everything I create for this class is made 

available online

• All of it can be accessed from the Class Web 

Page, whose address will be given in class

• You should bookmark this page because the page 

will function as our syllabus, instead of a paper 

syllabus

• It is a lot of material, but you should at least get 

to know the layout



Course Documents

• The "Course Policies" and "Classroom Rules" 

sections will give you a good idea of my rules 

and expectations.  

• Those sections also contain some supplementary 

information for you to check out.

• The page will feature links to class notes, along 

with schedule information and assignments.

• You should also check the site frequently for 

updates, such as new assignments posted.



Taking Notes

• Although I make my notes available in PDF form, 

I want to encourage you to take notes in class

• Studies have shown that students learn more 

when they take notes, even if they never look at 

their notes again

• Other studies have shown that the more activities 

and senses are engaged when you learn something, 

the greater your likelihood of remembering



Taking Notes

• Writing notes engages another part of your 

brain, which increases recollection

• All of you should take notes

• Probably the best practice would be for you to 

print the notes before coming to class.

• That way, you can write your own notes in the 

margins, along with any questions you have.

• Also, if you are receiving specific help for some 

task, it's good to write things down...



Cheating

• All students are expected to follow the 

University's Code of Student Conduct

• You will find this at 
http://www.umb.edu/life_on_campus
/policies/community/code

• The Computer Science Department has the 

following policy on cheating

• You will be given a score of zero if you cheat on 

any assignment, quiz or test



Cheating

• If you cheat a second time you will receive an F 

in the course

• If you cheat a third time you can be expelled 

from the University

• I put a great deal of work into my courses, and I 

ask you to respect that work by not cheating

• Given the nature of this course, we need to 

address the topic of collaboration...



Is Collaboration "Cheating"?

• The short answer: It depends.

• Discussing concepts (things not pertaining 

directly and specifically to the assignment) with 

others is fine.

• You may also help one another with things like: 

 Using software development tools like DrJava

 Understanding the assignment itself – the parts already 

provided to you

 General programming-related issues, not pertaining to a 

specific assignment



Is Collaboration "Cheating"?

• You may not engage in any of the following: 

 Viewing or copying one another's code

 Copying or plagiarizing any solution from any source

 Coaching someone step-by-step through writing the 

solution code

 Failing to acknowledge any allowed collaboration, which 

must include names and/or sources

• Keep in mind that we (instructors) have various 

ways of detecting cheating, including detection 

software!



Accommodations for Disabilities

• The school is legally obligated to try to 

accommodate students with disabilities

• If you have a disability you can get help from 

Ross Center for Disability Services

 Location:

Upper Level of the Campus Center, Room 211

 Phone: 617-287-7430

 Web Site: 

https://www.umb.edu/academics/

vpass/disability/



Accommodations for Disabilities

• After you have discussed the matter with them, 

see me

 They will usually draft a letter explaining any 

accommodations you should receive.

 You should get this letter to me ASAP!

 If you require extra time for an exam, then it is your 

responsibility to arrange for this at least a week in 

advance!

• Also, you may wish to check out the page 

containing my own notes:

http://www.cs.umb.edu/~ckelly/teaching/

common/data/disability.html



Email

• All communication outside of class will be 

conducted through e-mail

• For course announcements and personal 

correspondence, I will be using your 

@cs.umb.edu email

• However, you need not check that e-mail.  

Instead, you can have correspondence to that 

address forwarded to the account of your choice.

• This is why you are advised to set up your 

.forward file on your Linux account



Email

• It is your responsibility to check your e-mail 

regularly – at least once every 24 hours.

• If I have sent you an email about something 

concerning the class, I'll assume that you have 

been given adequate notice.

• Also, grades on certain assignments may be 

distributed via your @cs.umb.edu email



Contacting Me

• If you have a question, email me at 

cg.kelly2013@gmail.com

• Please be sure to:

 Use a descriptive, meaningful subject line

 Begin the subject with the class name (e.g., IT114, CS110, 

etc.)

• Don't hesitate to contact me if you are stuck 

and/or need help with something.

• Please allow for at least 24 hours for a response, 

or more, during weekends and holidays.



Office Hours

• My office is S-3-130

• My official office hours are posted on the course 

web page

• You do not have to make a special appointment 

to see me during office hours – just drop in!

• If you need my help and cannot make it to office 

hours, contact me and we'll work something out



Attendance

• At each class I'll take attendance

• I do this to:

 Learn your names

 Have a record

• Your attendance will not affect your grade 

directly

• However, if you find yourself struggling with the 

material and have not been coming to class, I'll 

be less sympathetic



Do You Have Enough Time to Do the Work 

for This Course?

• Many of you work, either part time or full time

• This cuts down on the time you have available 

for class work

• You should not be taking this course if you do 

not have enough time to do all the work

• In this course, you will be learning a new way of 

thinking – like a computer

 For some this may come easily and naturally

 For others, it may require some extra effort



Do You Have Enough Time to Do the Work 

for This Course?

• As such, you may have to invest more time 

(tutoring, office hours, practice problems, etc.) in 

order to

 Learn the skills, and...

 Complete the work – at a sufficient level of quality to earn 

your desired grade

• If you sign up for more work than you can achieve 

in the time you have, you will be cheating yourself

• It requires doing enough work to digest and 

understand the material



Other Considerations...

• How well do you handle minute details?  Can 

you keep track of things like:

 Uppercase versus lowercase

 When to use single quotes ' ' versus double quotes " "

 When to use parentheses ( ) versus curly braces { } versus 

square brackets [ ]

• How good are you at reading directions and 

following them specifically? Such as...

 Coding conventions

 File names and locations

 Folder names and locations

 Assignment specifications



Other Considerations...

• For example, if asked to name a file 

homework_09.txt, that means none of the 

following are acceptable:
Homework_09.txt
homework09.txt
homework_9.txt
homework_09.rtf
Homework 9.doc
...

• Small details are especially important, 

considering how computers work.



Homework Assignments

• We assume that you are computer literate:

 Word Processing, Email, Web Browsing, 

Downloading Applications, etc.

• Reading for today: Dawson, Chapter 1

 We may not cover all this material in class, but you 

are responsible for knowing it on exams, etc.

• If you have a hard time with this material, please 

see me – sooner rather than later!
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How Computers Work

• Computers consist of two main components: 
hardware and software

• Hardware refers to the physical parts, such as the 
following:

• These parts, in turn, consist of smaller 
components.  

• The case, for example, is home to the processor, 
memory, data storage, chips, wires, and so forth.

➢Monitor

➢The "case"

➢Keyboard

➢Mouse

➢Cables

➢Printers
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4 Main Hardware Components

1. CPU: "Central Processing Unit" - the "brains" of the 
computer.  Carries out the actual commands of a 
program.

2. I/O: "Input/Output" - keyboard, mouse, monitor, 
speakers, and other tools that make user interaction 
possible

3. Main memory: Also called "Random Access 
Memory" (RAM).  Keeps data nearby for the CPU to 
use

4. Storage: A device that holds data on a more 
permanent basis, for use and reuse
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Types of Software (Programs)

• Computers are very powerful pieces of hardware 
that can’t do much useful work until they are 
properly programmed

• There are three different types of software:

 Operating Systems

 Application Programs

 Software Development Tools (or Kits)

• As a computer programmer, you may need to use 
and/or write any or all three types of programs
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Operating System Programs

• “O/S” programs control the hardware and allow 
application programs to be executed

• An O/S is usually built to run on a specific 
underlying hardware platform, e.g. PC, MAC, or 
server

• Generally these are the most complex types of 
programs to write and test

• Examples:

 M/S DOS, Windows, UNIX, Linux, Solaris, etc.
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Application Programs

• “Apps” perform useful work for their users
• Apps are usually built to run on a specific 

operating system (and maybe a specific 
underlying hardware platform)

• Users typically need to provide a lot of 
information about their job tasks for a 
programmer to write a good application program 
for that purpose

• Examples:

 Word, Excel, PowerPoint, Chrome, etc.
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Software Development Tools

• Software Development Tools or Kits (SDK’s) are 
specialized application programs that allow 

programmers to write and test programs

• Experienced programmers generally prefer an 

“Integrated Development Environment” (IDE)
• Examples (that we’ll be using in this course):

 IDLE (packaged with Python)

 Sublime Text 2 (used in class)
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Styles of User Interface

• User Interface: How the user interacts with the 

underlying program logic

• There are two predominant styles:

 Command Line Interface (CLI)

 Graphical User Interface (GUI)

•As a computer programmer, you must be able to 

use and/or write programs for both styles of user 

interface
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Styles of User Interface

• Command Line Interface (CLI)

 Computer types a “Prompt” requesting input
 User types a “Command” with “Parameters”
 Predominantly an old style of interaction that does not require 

a lot of computer power, but still in use today in some O/S 

and applications

 Considered to be NOT “user  friendly”, but is very efficient 
when combined with “scripting”

 Example:  UNIX/Linux CLI, command & parameter

$ cat file.txt (display the contents of the file)
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Styles of User Interface

•Graphical User Interface (GUI)

 Computer displays a combination of text and graphical 

symbols offering options to the user

 User manipulates mouse and uses keyboard to select from 

the offered options (“hot keys”) or to enter text
 More common now (computer power is cheap)

 Considered by most to be “user friendly”
 Examples: Windows, Microsoft Office, iTunes
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Software Development Tools

• Using development tools separately

Source

File(s)

(.py)

Programmer

Interpreter

(python)

Editor

Program

executes

Command Line Interface
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Using Tools Separately

• Example UNIX/Linux Commands and Parameters

$ nano HelloWorld.py

(Create/edit “source file” via the command line)
$ python HelloWorld.py

Hello World

$ exit
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Software Development Tools

• Your options include IDLE (usually comes with 

installation) and Sublime Text 2

Programmer

Graphical User Interface

Source

File(s)

(.py)

Interpreter

(python)

Edit

Program

executes

Run
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Live Demonstration: IDLE
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Live Demonstration:

Sublime Text 2
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Errors

A program can have three types of errors:

• Compile-Time: The dev. software will find syntax errors, type 
errors, and other basic problems

(Not applicable to Python because it is an interpreted 

programming language)

• Runtime: A problem can occur during program execution, 
such as trying to divide by zero, which causes a program to 
terminate abnormally

(For Python, this will include what would be compile-time

errors, in another language)

• Logical: A program may run, but produce incorrect results, 
perhaps using an incorrect formula
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Program Development Steps

Edit and save

source code

Build source code

to create program

Run program and

evaluate results

Errors

Errors

• Classical “Waterfall” Development Steps



Program Development Steps

• An incremental approach
Requirements,
“nice-to-haves”, 
brainstorms,
diagrams,
etc.

Finished

product

Analysis 
and Design

Coding (a 
little bit) and 
Compilation

Testing

Evaluating 

and Reflecting

Planning and 

Delegating


