
Preliminaries and Intro. Material

 Course Documents

 Taking Notes

 Cheating

 Accommodations

 E-mail

 Attendance

 Time and Other Considerations

 Programs, Software, and Software Development

Course Documents

• Everything I create for this class is made

available online

• All of it can be accessed from the Class Web

Page, whose address will be given in class

• You should bookmark this page because the page

will function as our syllabus, instead of a paper

syllabus

• It is a lot of material, but you should at least get

to know the layout

Course Documents

• The "Course Policies" and "Classroom Rules"

sections will give you a good idea of my rules

and expectations.

• Those sections also contain some supplementary

information for you to check out.

• The page will feature links to class notes, along

with schedule information and assignments.

• You should also check the site frequently for

updates, such as new assignments posted.

Taking Notes

• Although I make my notes available in PDF form,

I want to encourage you to take notes in class

• Studies have shown that students learn more

when they take notes, even if they never look at

their notes again

• Other studies have shown that the more activities

and senses are engaged when you learn something,

the greater your likelihood of remembering

Taking Notes

• Writing notes engages another part of your

brain, which increases recollection

• All of you should take notes

• Probably the best practice would be for you to

print the notes before coming to class.

• That way, you can write your own notes in the

margins, along with any questions you have.

• Also, if you are receiving specific help for some

task, it's good to write things down...

Cheating

• All students are expected to follow the

University's Code of Student Conduct

• You will find this at
http://www.umb.edu/life_on_campus
/policies/community/code

• The Computer Science Department has the

following policy on cheating

• You will be given a score of zero if you cheat on

any assignment, quiz or test

Cheating

• If you cheat a second time you will receive an F

in the course

• If you cheat a third time you can be expelled

from the University

• I put a great deal of work into my courses, and I

ask you to respect that work by not cheating

• Given the nature of this course, we need to

address the topic of collaboration...

Is Collaboration "Cheating"?

• The short answer: It depends.

• Discussing concepts (things not pertaining

directly and specifically to the assignment) with

others is fine.

• You may also help one another with things like:

 Using software development tools like DrJava

 Understanding the assignment itself – the parts already

provided to you

 General programming-related issues, not pertaining to a

specific assignment

Is Collaboration "Cheating"?

• You may not engage in any of the following:

 Viewing or copying one another's code

 Copying or plagiarizing any solution from any source

 Coaching someone step-by-step through writing the

solution code

 Failing to acknowledge any allowed collaboration, which

must include names and/or sources

• Keep in mind that we (instructors) have various

ways of detecting cheating, including detection

software!

Accommodations for Disabilities

• The school is legally obligated to try to

accommodate students with disabilities

• If you have a disability you can get help from

Ross Center for Disability Services

 Location:

Upper Level of the Campus Center, Room 211

 Phone: 617-287-7430

 Web Site:

https://www.umb.edu/academics/

vpass/disability/

Accommodations for Disabilities

• After you have discussed the matter with them,

see me

 They will usually draft a letter explaining any

accommodations you should receive.

 You should get this letter to me ASAP!

 If you require extra time for an exam, then it is your

responsibility to arrange for this at least a week in

advance!

• Also, you may wish to check out the page

containing my own notes:

http://www.cs.umb.edu/~ckelly/teaching/

common/data/disability.html

Email

• All communication outside of class will be

conducted through e-mail

• For course announcements and personal

correspondence, I will be using your

@cs.umb.edu email

• However, you need not check that e-mail.

Instead, you can have correspondence to that

address forwarded to the account of your choice.

• This is why you are advised to set up your

.forward file on your Linux account

Email

• It is your responsibility to check your e-mail

regularly – at least once every 24 hours.

• If I have sent you an email about something

concerning the class, I'll assume that you have

been given adequate notice.

• Also, grades on certain assignments may be

distributed via your @cs.umb.edu email

Contacting Me

• If you have a question, email me at

cg.kelly2013@gmail.com

• Please be sure to:

 Use a descriptive, meaningful subject line

 Begin the subject with the class name (e.g., IT114, CS110,

etc.)

• Don't hesitate to contact me if you are stuck

and/or need help with something.

• Please allow for at least 24 hours for a response,

or more, during weekends and holidays.

Office Hours

• My office is S-3-130

• My official office hours are posted on the course

web page

• You do not have to make a special appointment

to see me during office hours – just drop in!

• If you need my help and cannot make it to office

hours, contact me and we'll work something out

Attendance

• At each class I'll take attendance

• I do this to:

 Learn your names

 Have a record

• Your attendance will not affect your grade

directly

• However, if you find yourself struggling with the

material and have not been coming to class, I'll

be less sympathetic

Do You Have Enough Time to Do the Work

for This Course?

• Many of you work, either part time or full time

• This cuts down on the time you have available

for class work

• You should not be taking this course if you do

not have enough time to do all the work

• In this course, you will be learning a new way of

thinking – like a computer

 For some this may come easily and naturally

 For others, it may require some extra effort

Do You Have Enough Time to Do the Work

for This Course?

• As such, you may have to invest more time

(tutoring, office hours, practice problems, etc.) in

order to

 Learn the skills, and...

 Complete the work – at a sufficient level of quality to earn

your desired grade

• If you sign up for more work than you can achieve

in the time you have, you will be cheating yourself

• It requires doing enough work to digest and

understand the material

Other Considerations...

• How well do you handle minute details? Can

you keep track of things like:

 Uppercase versus lowercase

 When to use single quotes ' ' versus double quotes " "

 When to use parentheses () versus curly braces { } versus

square brackets []

• How good are you at reading directions and

following them specifically? Such as...

 Coding conventions

 File names and locations

 Folder names and locations

 Assignment specifications

Other Considerations...

• For example, if asked to name a file

homework_09.txt, that means none of the

following are acceptable:
Homework_09.txt
homework09.txt
homework_9.txt
homework_09.rtf
Homework 9.doc
...

• Small details are especially important,

considering how computers work.

Homework Assignments

• We assume that you are computer literate:

 Word Processing, Email, Web Browsing,

Downloading Applications, etc.

• Reading for today: Dawson, Chapter 1

 We may not cover all this material in class, but you

are responsible for knowing it on exams, etc.

• If you have a hard time with this material, please

see me – sooner rather than later!

22

How Computers Work

• Computers consist of two main components:
hardware and software

• Hardware refers to the physical parts, such as the
following:

• These parts, in turn, consist of smaller
components.

• The case, for example, is home to the processor,
memory, data storage, chips, wires, and so forth.

➢Monitor

➢The "case"

➢Keyboard

➢Mouse

➢Cables

➢Printers

23

4 Main Hardware Components

1. CPU: "Central Processing Unit" - the "brains" of the
computer. Carries out the actual commands of a
program.

2. I/O: "Input/Output" - keyboard, mouse, monitor,
speakers, and other tools that make user interaction
possible

3. Main memory: Also called "Random Access
Memory" (RAM). Keeps data nearby for the CPU to
use

4. Storage: A device that holds data on a more
permanent basis, for use and reuse

24

Types of Software (Programs)

• Computers are very powerful pieces of hardware
that can’t do much useful work until they are
properly programmed

• There are three different types of software:

 Operating Systems

 Application Programs

 Software Development Tools (or Kits)

• As a computer programmer, you may need to use
and/or write any or all three types of programs

25

Operating System Programs

• “O/S” programs control the hardware and allow
application programs to be executed

• An O/S is usually built to run on a specific
underlying hardware platform, e.g. PC, MAC, or
server

• Generally these are the most complex types of
programs to write and test

• Examples:

 M/S DOS, Windows, UNIX, Linux, Solaris, etc.

26

Application Programs

• “Apps” perform useful work for their users
• Apps are usually built to run on a specific

operating system (and maybe a specific
underlying hardware platform)

• Users typically need to provide a lot of
information about their job tasks for a
programmer to write a good application program
for that purpose

• Examples:

 Word, Excel, PowerPoint, Chrome, etc.

27

Software Development Tools

• Software Development Tools or Kits (SDK’s) are
specialized application programs that allow

programmers to write and test programs

• Experienced programmers generally prefer an

“Integrated Development Environment” (IDE)
• Examples (that we’ll be using in this course):

 IDLE (packaged with Python)

 Sublime Text 2 (used in class)

28

Styles of User Interface

• User Interface: How the user interacts with the

underlying program logic

• There are two predominant styles:

 Command Line Interface (CLI)

 Graphical User Interface (GUI)

•As a computer programmer, you must be able to

use and/or write programs for both styles of user

interface

29

Styles of User Interface

• Command Line Interface (CLI)

 Computer types a “Prompt” requesting input
 User types a “Command” with “Parameters”
 Predominantly an old style of interaction that does not require

a lot of computer power, but still in use today in some O/S

and applications

 Considered to be NOT “user friendly”, but is very efficient
when combined with “scripting”

 Example: UNIX/Linux CLI, command & parameter

$ cat file.txt (display the contents of the file)

30

Styles of User Interface

•Graphical User Interface (GUI)

 Computer displays a combination of text and graphical

symbols offering options to the user

 User manipulates mouse and uses keyboard to select from

the offered options (“hot keys”) or to enter text
 More common now (computer power is cheap)

 Considered by most to be “user friendly”
 Examples: Windows, Microsoft Office, iTunes

31

Software Development Tools

• Using development tools separately

Source

File(s)

(.py)

Programmer

Interpreter

(python)

Editor

Program

executes

Command Line Interface

32

Using Tools Separately

• Example UNIX/Linux Commands and Parameters

$ nano HelloWorld.py

(Create/edit “source file” via the command line)
$ python HelloWorld.py

Hello World

$ exit

33

Software Development Tools

• Your options include IDLE (usually comes with

installation) and Sublime Text 2

Programmer

Graphical User Interface

Source

File(s)

(.py)

Interpreter

(python)

Edit

Program

executes

Run

34

Live Demonstration: IDLE

35

Live Demonstration:

Sublime Text 2

36

Errors

A program can have three types of errors:

• Compile-Time: The dev. software will find syntax errors, type
errors, and other basic problems

(Not applicable to Python because it is an interpreted

programming language)

• Runtime: A problem can occur during program execution,
such as trying to divide by zero, which causes a program to
terminate abnormally

(For Python, this will include what would be compile-time

errors, in another language)

• Logical: A program may run, but produce incorrect results,
perhaps using an incorrect formula

37

Program Development Steps

Edit and save

source code

Build source code

to create program

Run program and

evaluate results

Errors

Errors

• Classical “Waterfall” Development Steps

Program Development Steps

• An incremental approach
Requirements,
“nice-to-haves”,
brainstorms,
diagrams,
etc.

Finished

product

Analysis
and Design

Coding (a
little bit) and
Compilation

Testing

Evaluating

and Reflecting

Planning and

Delegating

