
Variables, Constants, and Data Types

• Strings and Escape Characters

• Primitive Data Types

• Variables, Initialization, and Assignment

• Constants

• Reading for this lecture:

– Dawson, Chapter 2

– http://introcs.cs.princeton.edu/python/12types

Character Strings

• So far, all of our program data has been text in string form. A
string is, quite literally, a string of characters

• Test can be represented as a string literal by bounding it with a
pair of double quotes OR a pair of single quotes. (Must match!)

• Examples:

"This is a string literal." 'X'

'123 Main Street' "" (empty string)

• The word "literal" indicates that we are directly coding the
information rather that getting it indirectly.

Combining Strings

• To combine (or "concatenate") two strings, we can use the plus
sign

"Peanut butter " + "and jelly"

• You may find this helpful when printing output where some parts
of the text may vary while other parts remain the same. Consider
this example:

name = "Bob"

print ("Hello, " + name + "...welcome!")

• Prints:

Hello, Bob...welcome!

String Concatenation

• The + operator is also used for arithmetic addition

• The function that it performs depends on the type of the
information on which it operates

• If both operands are strings, it performs string concatenation

• If both operands are numeric, it adds them

• "Hello " + "world" gives you "Hello world"

• 4 + 42 gives you 46

• NOTE: You cannot directly concatenate a string and a number:

String Concatenation

• However, it will work if you first convert the number to
its string equivalent:

print ("My favorite number is " + str(7))

My favorite number is 7

• This has to do with the behavior of different data types in
Python.

• Other programming languages create different
restrictions and allowances based on how their data
types are set up

A String A String
Syntax

Error

Escape Sequences

• What if we want to include the quote character itself?

• The following line would confuse the interpreter because it would
interpret the two pairs of quotes as two strings and the text
between the strings as a syntax error:

print ("I said "Hello" to you.")

• One option would be to replace the beginning and ending
double-quote symbols with single-quotes:

print ('I said "Hello" to you.')

• The reverse would also be valid

print ("I said 'Hello' to you.")

Escape Sequence

\t
\n
\r
\"
\'
\\

Meaning

tab
newline
carriage return
double quote
single quote
backslash

Escape Sequences

• Another option is to use escape sequences, which are character
combinations that have a special meaning within a string

• Some Escape Sequences:

• Example:

print ("Hello,\n\tworld")

Hello,

world

Useful string methods

• Using a string method requires three things:

1) A reference to the string, such as a string literal or a variable
2) The method name, such as upper
3) The argument list, a pair of parentheses () with a list of values inside.
May be empty

• Example:
print ("Hello") → Hello
print ("Hello".upper()) → HELLO
print ("Hello".lower()) → hello

• See Table 2.3 on page 38 of the textbook for more methods you
can use

Number Bases

• You are probably used to numbers in base-10, where each
digit is a 0-9 (10 possible values)

• The base specifies how many values can be expressed using
a particular number of digits.

• For example, 3 base-10 digits can express 1000 different
values:

000-999

• In other words, the base raised to the power the number of
digits

Example: 10^3 = 1000

Number Bases

• In addition to base-10, you will also see other types, such as
the following:

➢ Binary: base-2, every digit is a 0 or 1

➢ Octal: base-8, every digit is a 0-7

➢ Hexadecimal: base-16, every digit is a 0-15; digits 10-15
become a-f

• I recommend researching this topic to become more familiar

• In programming, you will encounter binary very frequently
because that is how data is stored

Number Bases – Binary

• You are probably familiar with "bytes" as a unit of computer
storage

• A byte is made of 8 bits, where each bit is a 0 or 1 – in other
words, binary

• You have progressively larger forms of storage:

➢ bits

➢ bytes

➢ kilobytes

➢ megabytes

➢ gigabytes

➢ TERABYTES!!!

Types of Data

• In Python, all data are objects

• You will work mainly with two types of data:
• Built-in data types:

–These include most basic forms of data you will see in your programs

• Complex data types (my wording):

–Conglomerations of other data types, both built-in and other complex types

• We will introduce types as needed

Some Primitive Types

• We call these "primitive" because they form the basis for other
more complex data types

• Three numeric types:

int

float

complex

• True/False (or "boolean") values:

bool

• A type for text (i.e., strings):

str

Numeric Primitive Data

• The int type is for whole numbers:

7, -358, 0, -10, 12398

• The float type is for decimal (or "floating-point")
numbers:

7.6, -35.8, 0.0, -1.09, 12398.0

• The complex type is for numbers with an imaginary
component. (We probably will not use this type.)

• Each of these will have different behaviors and
limitations, depending on a number of factors

Boolean Primitive Data

• A bool type can have either of two values:

True

False

• True and False are reserved words in Python

• A bool type can be useful for representing any two states

such as a light bulb being on or off

on = True

String (str) Data

• As mentioned earlier, a "string" is a sequence of zero or
more characters

• You will use strings often, in different ways:
➢ Printing as output

➢ Fetching as input

➢ Comparing

➢ Reversing

➢ Converting to/from other types

• Work and practice to become comfortable with this type and
its many uses

Characters

• Some languages, such as Java, have a character type, specifically

• Python does not, though, and if you need to use a character, you
will likely just use a string consisting of a single character

• Each character, however, will correspond to an integer value in
some character set, and there are methods to perform
conversions:

➢ Integer to character: chr

➢ Example: chr(97) → a
➢ Character to integer: ord

➢ Example: ord('a') → 97

Character Sets

• A character set is an ordered list of characters, with each

character corresponding to a unique number

• Python uses the Unicode character set

• The Unicode character set uses sixteen bits per character,

allowing for 65,536 (2^16) unique characters

• It is an international character set, containing symbols and

characters from many world languages

uppercase letters

lowercase letters

punctuation

digits

special symbols

control characters

A, B, C, …
a, ď, Đ, …
period, semi-Đolon, …
0, ϭ, Ϯ, …
&, |, \, …
carriage return, tab, ...

Characters

• The ASCII character set is older and smaller (8-bit) than Unicode,
but is still quite popular (in C programs)

• The ASCII characters are a subset of the Unicode character set,
including:

Variable Declaration

• A variable is a name for a location in memory

• A variable must be declared by specifying its name and
its initial value

name = "Bob" .

body_temp = 98.6 .

light_on = False .

• In some languages (e.g., Java), variables are of a specific
type, but Python is more flexible

Constants

• A constant is an identifier that is similar to a variable except that it
is meant to hold the same value during its entire existence

• As the name implies, it is constant, not variable

• In Python, we indicate a constant using ALL CAPS

MIN_HEIGHT = 69 .

• This indicates that the value should not be changed after it is first
declared

• Some programming languages will actually forbit you to change
the value of a constant

Constants

• Constants are useful for three important reasons

• First, they give meaning to otherwise unclear literal values

➢ For example, NUM_STATES is more meaningful than the literal 50

• Second, they facilitate program maintenance

➢ If a constant is used in multiple places and you need to change its value later, its value
needs to be updated in only one place – what if the country gets a 51st state?

➢ Rather than having to find and change it in multiple places!

• Third, they formally show that a value should not change, avoiding
inadvertent errors by other programmers

total = 55

Value Assignment

• An assignment statement gives the variable an actual value in
memory

• The equals sign provides this function

• The expression on the right is evaluated and the result is stored as
the value of the variable on the left

• Any value previously stored in total is overwritten
➢ Unlike some other languages, Python allows you to store any type of data in any

variable.

• Other languages - like Java – will restricted the kinds of values you
can assign to a variable, based on its type

Variables and Literals

• i = 7

• j = -8.7

• k = 9

• c = “Hello World"
• is_it_on = True

