
Expressions, Data Conversion, and

Input

• Expressions

• Operators and Precedence

• Assignment Operators

• Data Conversion

• Input

• Reading for this class: Dawson, Ch. 2

Operators and Operands

• Operand: Can be any element that has some value:

–A literal:

1, -2.5, True, False,
"d", "Hello World"

–A variable:

name, balance, course_title

–The result of a method call:

student.get_name()

Operators and Operands

• Operator: Something that computes a result using
one or more operands:

1 + 2

6 / 3

not student_is_senior

count += 1

5 * 4 == 10 * 2

18 – 6 != 6 - 18

Add +
Subtract -
Multiply *
Divide /
Remainder %

Integer //
(floor)

Division

Exponent **

See word_problems.py

Expressions

• An expression is a combination of one or more operators and
operands

• Arithmetic expressions compute numeric results and make use of
the arithmetic operators:

• If either or both operands used by an arithmetic operator are floating point
(i.e., decimal), then the result is a floating point

14 / 3 equals

8 / 12 equals

4.66666...

0.666666...

14 % 3 equals

8 % 12 equals

2

8

14 // 3 equals 4

8 // 12 equals 0

Division and Remainder

• The division operators (/ and //) work differently, depending on
the types of operands supplied

• Try out the following and see what they do:

4 / 3 4.0 / 3 4 // 3 4.0 // 3

• The remainder operator (%) returns the remainder after dividing
the second operand into the first

Operator Precedence

• Operands and operators can be combined into complex expressions

result = total + count / maxi - offset

• Operators have a well-defined precedence which determines the order in
which they are evaluated

• Multiplication, division, and remainder are evaluated prior to addition,
subtraction, and string concatenation

• Arithmetic operators with the same precedence are evaluated from left to
right, but parentheses can be used to force the evaluation order

• See link for precedence information:

http://www.tutorialspoint.com/python/
python_basic_operators.htm

a + b + c + d + e

1 432

a + b * c - d / e

3 241

a / (b + c) - d % e

2 341

a / (b * (c + (d - e)))

4 123

a / b + c - d % e

1 243Without parentheses:

With parentheses:

Operator Precedence

•What is the order of evaluation in the following expressions?

First the expression on the right hand
side of the = operator is evaluated

Then the result is stored in the
variable on the left hand side

answer = sum / 4 + MAX * lowest

14 3 2

Assignment Revisited

• The assignment operator has a lower precedence than the
arithmetic operators

First, one is added to the
original value of count

Then the result is stored back into count
(overwriting the original value)

count = count + 1

Assignment Revisited

• The right and left hand sides of an assignment statement can
contain the same variable

Assignment Operators

• Often we perform an operation on a variable, and then store the
result back into that variable

• Python provides assignment operators to simplify that process

• For example, the statement

num += count

is equivalent to

num = num + count

Operator

+=
-=
*=
/=
%=

Example

x += y
x -= y
x *= y
x /= y
x %= y

Equivalent To

x = x + y
x = x - y
x = x * y
x = x / y
x = x % y

Assignment Operators

• There are many assignment operators in Python, including the
following:

3 1 2

Expressions such

as the former, if

used correctly,

can enhance your

code's readability

Assignment Operators

• The right hand side of an assignment operator can be a complex
expression

• The entire right-hand expression is evaluated first, then the result
is combined with the original variable

• Therefore

result /= (total-MIN) % num;

is equivalent to

result = result / ((total-MIN) % num);

Assignment Operators

• The behavior of some assignment operators depends on the
types of the operands

• If the operands to the += operator are strings, the assignment

operator performs string concatenation

• The behavior of an assignment operator (+=) is always consistent
with the behavior of the corresponding operator (+)

Data Conversion

• Sometimes it is convenient to convert data from one type to
another

• For example, in a particular situation we may want to treat an
integer as a decimal value

• These conversions do not change the type of a variable or the
value that's stored in it – they only convert the value itself as
part of a computation

Data Conversion

• Conversions must be handled carefully to avoid losing information

• Widening conversions are safest because they tend to go from a
less precise data type to a more precise one (such as an int to a
float)

• Narrowing conversions can lose information because they go
from a more precise data type to a less precise one (such as a
float to an int)

• Other types of data conversions involve changing to a completely
different form, such as converting a type to or from a string

Method Conversion

• The conversions you see at this stage will involve the use of methods:

str (value)

int (value)

float (value)

• Replace value with what you wish to convert

• For example:

x = 1.8 .

y = 10 .

print (int (x)) → 1 .

print (float(y)) → 10.0 .

Character Arithmetic

• Because characters are associated with 16-bit integer values, you
can do arithmetic with characters!

• For example, the expression

ord('b') - ord('a')

• will evaluate to 1 because the integer value of 'b' is one more
than that of 'a'

• As such, you may find it useful to become more comfortable at
converting back and forth between characters and their integer
equivalents

A
B
C

Character Arithmetic

• Statements: Prints:

print('a') a

print(97) 97

print(ord('a')) 97

print(chr(97)) a

• These lines will print as:

i = 0
print (chr(ord('A') + i))

i += 1
print (chr(ord('A') + i))

i += 1
print (chr(ord('A') + i))

Character Arithmetic

• Why does... print as?

print('a') a

Literal: 'a'

print(97) 97

Literal: 97

print(ord ('a')) 97

Character value converted to an int value: 97

print(chr (97)) a

Integer value converted to a char value: 'a'

Character Arithmetic

• Why does... print as?

i = 0
print (chr(ord('A') + i))

i += 1
print (chr(ord('A') + i))

i += 1
print (chr(ord('A') + i))

1)'A' → value of 'A' is converted to int: 97
2) 97 + i → evaluates to an int: 98
3) 98 is converted to a character, which gets printed.

(NOTE: The letters are printed successively because i starts off as

zero and gets incremented)

(It has to do

with the steps

of conversion...)

A
B
C

Reading Input

• Programs generally need input on which to operate

• The input method allows us to get this information from the

user, when writing a command-line application

• It can also be used to halt program execution until the user
presses Enter

• To use it, you will need:

1) The method name: input

2) Prompt text

Reading Input

• The input method will:

1) Print your specified prompt text

2) Wait for the user to press Enter

3) Return the user's input in the form of a string object (an
empty string, if the user entered no text)

• To halt program execution, you can use input without storing
the result.

• This can be useful when you want the program to stop at
certain points

See:

input_demo.py trust_fund_bad.py

personal_greeter.py trust_fund_good.py

Reading Input

•Examples:

name = input ("Name: ")

age = int (input ("Age: "))

height = float (input ("Height (m): ")

input ("Press Enter to continue")

print ("Your name is," name)

print ("You are", age, "years old")

print ("You are", height, "meters tall")

See useless_trivia.py

Interactive Applications (CLI)

• An interactive program with a command line interface contains a
sequence of steps to:

– Prompt the user

– Get the user’s responses
– Process the data as input is received (or after)

name = input("Enter name: ")

age = int(input("Enter age: "))

money = float(input("Money: $"))

See using_math.py

The math module

• The math module is part of the Python standard library. To use it, we must
first have the following line at the start of our program:

import math

• The math module contains methods that perform various mathematical
functions

• These include:

–square root

–exponentiation

–logarithms

–trigonometric functions

https://docs.python.org/3.4/library/math.html

The math Module

• In addition, Python also has several built-in methods that support
mathematical operations, such as abs (for absolute value) and min and max
(for the minimum or maximum of a list of values)

• Examples of use:

value = math.cos(90) + math.sqrt(delta)

print(abs(value))

print (math.log2 (16.0)) ==> 4.0

print (min (2, 4)) ==> 2

print (max (1, 5)) ==> 5

The random module

● The random module is for introducing elements of

randomness

• It must be imported:

import random

• Gives methods such as:

randint(a, b) : a <= x <= b

random() : 0.0 <= x < 1.0 (float type)

choice(seq) : some random element from a sequence

The random module

● More random methods:

https://docs.python.org/3.4/library/random.html

● Put the code below into a file and run it. Also, make up
some of your own and experiment:

import random

print (random.random())

print (random.randint(1, 10))

print (random.randint(20, 200))

Interactive Applications (CLI)

• Consider quadratic.py

We will not need this right away, but

eventually, we will...

import math

First, get A, B, and C from user

a = float (input ("Enter the coefficient of x
squared: "))

b = float (input ("Enter the coefficient of x: "))

c = float (input ("Enter the constant: "))

We have the input values, now what?

• To solve the quadratic equation, we need to program in Python
the formulas learned in high school algebra:

• How do we program those equations?

• We need to use

–The math module,

–Expression Evaluation, and

–Assignment

FYI, this value
is called the
discriminant!

Solving Quadratic Equations

disc = b*b - 4*a*c

root1 = ((-1 * b) + math.sqrt(disc)) / (2 * a)

root2 = ((-1 * b) - math.sqrt(disc)) / (2 * a)

• However, this program to solve for the roots of a quadratic
equation is deficient!

• The equations for calculating the roots are correct but are not
used correctly in the program

• It only gives correct answers so long as the coefficients entered
actually belong to a quadratic equation with real roots

The math.sqrt method

cannot handle this!

Solving Quadratic Equations

• User can enter any values for “a”, “b”, and “c”, which can create special cases
that the formula cannot accommodate

• Let’s try a = 2 , b = 3 , and c = 4 (demo)

• What happens?

• Answer: A negative discriminant, which has no real square root

discriminant = 3 * 3 – 4 * 2 * 4

discriminant = 9 – 32

discriminant = -23

Solving Quadratic Equations

• However, there is the “imaginary” number i (the square root
of -1)

In math: √-7 => i * √7
String: “i * “ + str(math.sqrt(7)) => “i * 2.6457513110645907"

Equation may have complex roots (e.g., 5 + i√7 and 5 – i√7)

• How do we accommodate such user input?

• Answer: check discriminant value:

–Positive: Use given formula

–Negative: Construct complex root strings

–Zero: -b/(2a) (Need not print value twice!)

Solving Quadratic Equations

• Other possible problems:

o a = 0 (but not b): Formula divides by 2 * a, leading to an error if a equals
0. (Equation is linear, not quadratic, so the only root is the y-
intercept)

o a and b (but not c) are 0: A horizontal line that never touches the x-
axis, so no roots

o All three are 0: The x-axis itself, so all values are roots (in the sense that
any value of x would satisfy 0*x^2 + 0*x + 0 = 0

• Our program must account for all these possibilities – by
making decisions!

Control Flow

• Up until now, each program has been a linear sequence of steps

• First statement, second, and so forth...in sequence

• To make decisions while solving a quadratic equation, we need to
direct the program to different statements based upon
contingencies of user input

• We will see how to do that shortly

