Expressions, Data Conversion, and
Input

Expressions

Operators and Precedence
Assignment Operators

Data Conversion

Input

Reading for this class: Dawson, Ch. 2

Operators and Operands

Operand: Can be any element that has some value:

1, F205, Frue, False,
-’ _

name, balance, course title
—The result of a method call:

—A literal:

—A variable:

Operators and Operands

» Qperator: Something that computes a result using
one or more operands:

10 2

63

Qo student_is_senior
count G=) 1

54 ED 10®2

180602 60 18

Expressions

* An expressionis a combination of one or more operators and
operands

* Arithmetic expressions compute numeric results and make use of
the arithmetic operators:

Add + Integer //
Subtract - (floor)
Multiply * Division
Divide /

Remainder % Exponent **x

« If either or both operands used by an arithmetic operator are floating point
(i.e., decimal), then the result is a floating point

Division and Remainder

 The division operators (/ and //) work differently, depending on
the types of operands supplied

14 / 3 equals 4.66666. ..
14 // 3 equals 4
8 / 12 equals 0.666666. ..
8 // 12 equals 0

* Try out the following and see what they do:
4 /3 4.0/3 4//3 4.0// 3

* The remainder operator (%) returns the remainder after dividing
the second operand into the first
14 % 3 equals 2

8 % 12 equals 8

Operator Precedence

Operands and operators can be combined into complex expressions

result = total + count / maxi - offset

Operators have a well-defined precedence which determines the order in
which they are evaluated

Multiplication, division, and remainder are evaluated prior to addition,
subtraction, and string concatenation

Arithmetic operators with the same precedence are evaluated from left to
right, but parentheses can be used to force the evaluation order

See link for precedence information:

http://www.tutorialspoint.com/python/

python basic operators.htm

Operator Precedence

*What is the order of evaluation in the following expressions?

a+b+c+d+ e a+b*c-d/ e
1 [2] (3] (4 (3] (1] (4] [2]

a/b+c-d¢%e
Without parentheses: (1] (3] (4] (2]

a/ (b+c) -dése

With parentheses:

a/ (b* (c+ (d-e)))

Assignment Revisited

« The assignment operator has a lower precedence than the
arithmetic operators

First the expression on the right hand
side of the = operator is evaluated

) Y
Then the result is stored in the
variable on the left hand side

Assignment Revisited

« The right and left hand sides of an assignment statement can
contain the same variable

First, one is added to the
original value of count

Then the result is stored back into count
(overwriting the original value)

Assignment Operators

Often we Eerform an operation on a variable, and then store the
result back into that variable

Python provides assignment operators to simplify that process

For example, the statement
num += count
IS equivalent to

num = num + count

Assignment Operators

* There are many assignment operators in Python, including the
following:

Operator Example Equivalent To
+= X +t= y X =X +y
-= X -= Y X =X -y
*= X *=y X =x *y
/= x /=y x=x/y
5= X 3= Y X =X 3 Y

Assignment Operators

« The right hand side of an assignment operator can be a complex
expression

* The entire right-hand expression is evaluated first, then the result
Is combined with the original variable

e Therefore

result /= (total-MIN) % num; .
Expressions such

is equivalent to as the former, if
used correctly,
can enhance your
code’s readability

result = result / ((total-MIN) % num) ;
3 1 2

Assignment Operators

The behavior of some assignment operators depends on the
types of the operands

If the operands to the #= operator are strings, the assignment
operator performs string concatenation

The behavior of an assignment operator (#=) is always consistent
with the behavior of the corresponding operator (#)

Data Conversion

« Sometimes it is convenient to convert data from one type to
another

* For example, in a particular situation we may want to treat an
Integer as a decimal value

» These conversions do not change the type of a variable or the
value that's stored in it — they only convert the value itself as
part of a computation

Data Conversion

Conversions must be handled carefully to avoid losing information

Widening conversions are safest because they tend to go.from a
less precise data type to a more precise one (such as an int to a
float)

Narrowing conversions can |lose information because they go
from.a more precise data type to a less precise one (such as a
float to an int)

Other types of data conversions involve changing to a completely
different form, such as converting a type to or from a string

Method Conversion

« The conversions you see at this stage will involve the use of methods:

str (value)
int (value)
float (value)

* Replace value with what you wish to convert

* For example:

x =1.8

y =10

print (int (x)) - 1
print (£loat(y)) — 10.0

Character Arithmetic

Because characters are associated with 16-bit integer values, you
can do arithmetic with characters!

For example, the expression
ord('b') - ord('a')

will evaluate to 1 because the integer value of 'b" is one more
than that of 'a

As such, you may find it useful to become more comfortable at
converting back and forth between characters and their integer
equivalents

Character

Arithmetic

« Statements:
print(‘'a’)
print (97)
print(ord('a'))
print (chr (97))

e These lines will

print (chr (ord('A') + 1i))
print (chr (ord('A') + 1i))
print (chr (ord('A') + 1i))

Prints:

a
97

97
a

print as:

Q w P

Character Arithmetic

* Why does... print as?
print('a') a

Literal: 'a’
print (97) 97

Literal;: 97
print(ord ('a')) 97

Character value converted to an int value; 97

print (chr (97)) a

Integer value converted to a char value: 'a’

Character Arithmetic

 Why does... print as?
i =0
print (chr(ord('A') + 1)) A
i +=1 B
print (chr (ord('A') + 1))
i +=1 C (It has to do
print (chr (ord('A') + 1)) with the steps

of conversion...)

) 'A' — walue of 'A' is converted to int: 97
) 97 + 1 - evaluates to an int: 98
) 98 is converted to a character, which gets printed.

(NOTE: The letters are printed successively because i starts off as
zero and gets incremented)

1
2
3

Reading Input

Programs generally need input on which to operate

The input method allows us to get this information from the
user, when writing a command-line application

It can also be used to halt program execution until the user
presses Enter

To use it, you will need:
1) The method name: input

2) Prompt text

Reading Input

* The input method will:
1) Print your specified prompt text
2) Wait for the user to press Enter

3) Return the user's input in the form of a string object (an
empty string, if the user entered no text)

» To halt program execution, you can use input without storing
the resullt.

* This can be useful when you want the program to stop at
certain points

Reading Input

*Examples:
name = input ('"Name: ")
age = int (input ("Age: "))

height = float (input ("Height (m): ")
input ("Press Enter to continue")

print ("Your name is," name)

print ("You are'", age, "years old")
print ("You are", height, "meters tall')

See:

input demo.py trust fund bad.py
personal greeter.py trust fund good.py

Interactive Applications (CLI)

* An interactive program with a command line interface contains a
sequence of steps to:

— Prompt the user
— Get the user’s responses

— Process the data as input is received (or after)

name = input("Enter name: ")
age = int(input("Enter age: "))
money = £loat(input("Money: $"))

The math module

e The math module is part of the Python standard library. To use it, we must
first have the following line at the start of our program:

import math

* The math module contains methods that perform various mathematical
functions

* These include: See using math.py

—square root
—exponentiation
—logarithms

—trigonometric functions

https://docs.python.org/3.4/library/math.html

The math Module

 In addition, Python also has several built-in methods that support
mathematical operations, such as abs (for absolute value) and min and max
(for the minimum or maximum of a list of values)

« Examples of use:

value = math.cos(90) + math.sqgrt(delta)
print (abs (value))
print (math.log2 (16.0)) ==> 4.0
print (min (2, 4)) ==> 2

print (max (1, 5)) ==> 5

The random module

The random module is for introducing elements of
randomness

[t must be imported:

import random

Gives methods such as:
randint(a, b) :ad <= X <= b
random() : 0.0 <= x < 1.0 (float type)

choice (seq) : some random element from a sequence

The random module

. More random methods:
https://docs.python.org/3.4/library/random.html

. Put the code below into a file and run it. Also, make up
some of your own and experiment:

import random
print (random.random())
print (random.randint(l, 10))

print (random.randint (20, 200))

Interactive Applications (CLI)

* Consider quadratic.py

We will not need this right away, but
eventually, we will...
import math

First, get A, B, and C from user

a = float (input ("Enter the coefficient of x
squared: "))

b = float (input ("Enter the coefficient of x: "))

c = float (input ("Enter the constant: "))

We have the input values, now what?

* To solve the quadratic equation, we need to program in Python
the formulas learned in high school algebra:

_ —b++vb%2—4ac
b= >
a
 How do we program those equations?
* We need to use .
FYI, this value
—The math module, is called the —— p2 _4qc
—Expression Evaluation, and discriminant!

—Assignment

Solving Quadratic Equations

However, this program to solve for the roots of a quadratic
equation is deficient!

The equations for calculating the roots are correct but are not
used correctly in the program

It only gives correct answers so long as the coefficients entered
actually belong to a quadratic equation with real roots

Solving Quadratic Equations

User can enter any values for “a", "b", and “c”, which can create special cases
that the formula cannot accommodate

Let'strya =2,b = 3,ande = 4 (demo)
What happens?

Answer: A negative discriminant, which has no real square root

discriminant = 3 * 3 — 4 * 2 * /4

discriminant = 9 — 32

discriminant = -23
The math. sgrt method
cannot handle this!

Solving Quadratic Equations

« However, there is the “imaginary” number i (the square root
of -1)

In math: -7 =>i* 7

String: “i * “ + str(math.sqrt(7)) => “i * 2.6457513110645907"

Equation may have complex roots (e.g., 5 + iv7and 5 — i\7)

 How do we accommodate such user input?

« Answer: check discriminant value:
—Positive: Use given formula

—Negative: Construct complex root strings
—Zero: =b/ (2a) (Need not print value twice!)

Solving Quadratic Equations

* Other possible problems:

o a = @ (but not b): Formula divides by 2 * a, leading to an error if a equals
0. (Equation is linear, not quadratic, so the only root is the y-
intercept)

o aand b (but not ¢) are @: A horizontal line that never touches the x-
axis, so no roots

o All three are @: The x-axis itself, so all values are roots (in the sense that
any value of x would satisfy @*x~2 + 0*x + @ = 0

» Our program must account for all these possibilities — by
making decisions!

Control Flow

Up until now, each program has been a linear sequence of steps
First statement, second, and so forth...in sequence

To make decisions while solving a quadratic equation, we need to
direct the program to different statements based upon
contingencies of user input

We will see how to do that shortly

