
Boolean Expressions and If

• Flow of Control / Conditional Statements

• The if Statement

• Logical Operators

• The else Clause

• Block statements

• Nested if statements

• Reading for this class:

–Dawson, Chapter 3

–http://introcs.cs.princeton.edu/python/13flow

Flow of Control

• Default order of statement execution is linear: one after
another in sequence

• But, sometimes we need to decide which statements to
execute and/or how many times

• These decisions are based on boolean expressions (or
“conditions”) that evaluate to True or False

• The resulting order of statement execution, according to
these decisions, is called the flow of control

Conditions/Boolean Expressions

• A condition is often expressed as a boolean expression
(which returns a boolean result).

• Boolean expressions, like arithmetic ones, use operators,
such as the following equality and relational operators:

== equal to
!= not equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to

• Note: == and = are not the same!

Boolean Expressions

5 < 7

7 >= 5

x == 98

len(password) >= MIN_LENGTH

ins_prem * months != benefits - deductible

(volume - (1 / ph_value)) * 2 <= 1 / q_factor

a-- * (b / ((c - d) % e)) ==

(b * (c / a) + ((3 % q) + 7)

offer < minimum_bid

grade+1 >= a_grade

t_weight < weight

Logical Operators

• The following logical operators can also be used in
boolean expressions:

not Logical NOT
and Logical AND
or Logical OR

• They operate on boolean operands and produce boolean
results

–Logical NOT is a unary operator => one operand

–AND and OR are binary operators => two operands

a not a

True False

False True

Logical NOT

• The logical NOT operation is also called logical negation
or logical complement

• If some boolean condition a is True, then not a is False

• If a is False, then not a is True

• Logical operations can be shown with a truth table

Logical AND and Logical OR

• The logical AND expression

a and b

• is True if both a and b are True, and False otherwise

• The logical OR expression

a or b

• is True if at least one of a or b is True, and False otherwise

a b a and b a or b

True True True True

True False False True

False True False True

False False False False

Logical Operators

• A truth table shows all possible True-False combinations of
the terms

• Since and and or each have two operands, there are four
possible combinations of conditions a and b

if count != 0 and total/count > MAX:
print ("Testing...")

Short-Circuited Operators

• The processing of logical AND and logical OR is “short-
circuited”

• If the left operand is sufficient to determine the result, the
right operand is not evaluated. Example:

• Why would you do this?

• This coding technique must be used carefully

More Boolean Expressions

• NOTE: You should look at these primarily as examples of how
boolean expressions can be combined into more complex ones.

5 < 7 or offer < min_bid

7 >= 5 and x == 98

not done and x == 47

not (5 < 7 or offer < MIN) or (7 >= 5 and x == 98)

not (grade >= a_grade) and not (t_weight < weight)

not (len(password) >= MIN) or my_boolean

Conditional Statements

• A conditional statement decides which program statement
will be executed next

• We use conditional statements to make basic decisions as
the program runs.

• Recall the quadratic formula example:

o Check if a = 0, if b = 0, etc.

• In Python, we have a number of variations of the
conditional statement:

–if statement

–if-else statement

–if-elif-else statement

if condition:
statement

statement

statement

if is a Python

reserved word

The condition must be a

boolean expression. It must
evaluate to either True or False.

If the condition is True (i.e., evaluates to True),
the statements are executed.
If it is False, the statements are skipped.

See password.py

The if Statement

•The if statement has the following syntax:

if sum > MAX:
delta = sum - MAX

print ("The sum is " + str(sum))

The if Statement

• An example of an if statement:

• First the condition is evaluated -- either the value of sum is
either greater than the value of MAX, or it is not

• If the condition is True, the assignment statement is
executed -- if False, it is not

• The print statement,not being contingent upon sum <
MAX, is always executed next

if sum > MAX:
delta = sum - MAX

print ("The sum is " + str(sum))

Indentation

• The statement controlled by the if statement is indented

to indicate that relationship

• A consistent indentation style makes a program easier to
read and understand

• In Python, unlike many other languages, proper
indentation is necessary for the program to be interpreted
correctly!

• Moreover, human readers care!

if total > MAX:
print ("Error!!")
error_count += 1

Blocks of Statements

• Several statements can be indented in order to create a
“block”

• A block can be used to indicate several statements are
subordinate to another

• “if [condition is True]:”
–one statement => “do this thing”
–2 or more => “do this group of things”

if condition:
statement1

else:
statement2

See granted_or_denied.py

The if-else Statement

• An else clause can be added to an if statement to make an if-else
statement

condition is True => statement1 is executed

condition is False => statement2 is executed

• One or the other will be executed, but not both

if total > MAX:
print ("Error!!")
error_count += 1

else:
print ("Total: " + str(total))
current = total * 2

Block Statements

• In an if-else statement, the if portion, or the else

portion, or both, could be blocks:

• Think of each block as a "game plan" for one situation
versus the other

Composing an if(-else) statement

if offer < minimum_bid:

else:

print ("Offer is too low.")

print ("Please bid at least", minimum_bid)

offer = float(input("Your bid: "))

print ("You bidded $" + str(offer))

print ("You bidded $" + str(offer))

print ("Raise your offer to the",

"current highest? YES or NO)

answer = input ("Your reply: ")

Nested if Statements

• An if statement or an else clause can contain another
conditional statement

• The inner if statement is treated as a single statement,
but...

• An else clause is matched to the last unmatched if by

default, unless...

• Indentation is used to specify the if statement to which
an else clause belongs

Without Correct Indentation

num = 3

if num > 2:

print ("num > 2")

if num > 4:

print ("num > 4, too!")

else:

print ("num <= 2")

-> num > 2

num <= 2

With Correct Indentation

num = 3

if num > 2:

print ("num > 2")

if num > 4:

print ("num > 4, too!")

else:

print ("num <= 2")

-> num > 2

Prints correct result!

if condition1:
statement1

elif condition2:
statement2

elif condition3:
statement3

...
else:

default_statement

The if-elif-else Statement

• Sometimes, you may have multiple conditions to consider, in
which case you can add elif clauses can to your if statement:

See: mood_computer.py

if_elif_else.py

The if-elif-else Statement

• If condition1 is True, execute that block and continue with
the program.

• Otherwise, try condition2, and so forth.

• If no conditions are true, execute the else block

• The final else clause is optional. Its purpose is to serve as
a default, when none of the conditions apply.

See min_of_three_cond.py

The Conditional Operator

• Python has a conditional operator that uses a boolean
condition to evaluate one of two expressions

• Its syntax is:

expression1 if condition else expression2

• If the condition is True, expression1 is evaluated; if it is
False, expression2 is evaluated

• The value of the entire conditional operator is the value of the
selected expression

The Conditional Operator

• The conditional operator is similar to an if-else statement,
except that it is an expression that returns a single value

• For example, these are functionally equivalent:

larger = num1 if num1 > num2 else num2

if num1 > num2:

larger = num1

else:

larger = num2

• The conditional operator is ternary because it requires three
operands: a condition and two alternative values

See maitre_d.py

Non-Boolean Values as Conditions

• In Python, you are not limited to using values of True and
False as conditions

• In fact, any value can be interpreted as True or False,
specifics depending on the type

• For numbers, zero is False while anything else is True

• For strings, the empty string "" is False, while non-empty
strings are True

• More examples to come...

