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Organizing Data

• Sequences

 Tuples

 Lists

• Dictionaries

• Reading for this Lecture

• Dawson, Chapter 4 (p. 104 to end) and 5

• http://introcs.cs.princeton.edu/python/14array
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Keeping Track of Data 

• So far, in our programs, we have treated data in our 

programs as individual pieces, completely separate 

from one another

• This has worked for now, but as our programs become 

more complex, that will be impractical

• We are best served by finding ways to organize the 

data in our programs – so that we can keep track of it.

• We want to be able to create, use, and modify it in a 

predictable, logical manner.
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Keeping Track of Data 

• Python, like most programming languages, has a 

number of structures that will aid us in this.

• In some respects, as you will see, some of these 

structures are quite similar to one another.

• Despite this, they also have several differences, as well.

• For this reason, your program planning should include 

knowing what structure you are using…
• …and why!
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Strings Revisited

• One very obvious (and common) form of data 

organization is the use of strings.

• After all, a string is actually a sequence of data points –
specifically, characters.

• Organizing the characters into this form allows us to 

efficiently read, write, and modify text.  We can:

 Combine strings

 Iterate (i.e., loop) through their characters

 Extract single characters

 Extract substrings
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Sequences
• In fact, we can have sequences of any kind of data, 

regardless of type. 

• In addition to the string form – a sequence of 
characters – we can also have sequences of:

 Numbers 

 Booleans

 Strings

 Other sequences!

• After all, in Python, a sequence itself is an object

• In some programming languages, a sequence can 
contain only items of a particular type.

• Python, however, is more flexible in this, as we will 
see.
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Tuples
• The most basic sequence in Python is probably the 

tuple

• A tuple is more or less just like a string, except that it 
can contain any kind of objects

• The syntax for creating a tuple is:

variable = (first, second,..., last)

• Examples:

names = (“Bob”, “Susan”, “Jill”)
id_numbers = (123, 456, 789)

booleans = (True, False, True)

items = (“Bob”, 456, True)
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Tuples
• As with strings…

• A tuple can be empty.  empty_tup = ()

• A tuple can be a condition.  An empty tuple would 
be considered False, while a non-empty one 
would be considered True

• You can print a tuple

names = (“Bob”, “Susan”, “Jill”)
print(names)

Prints as: ('Bob', 'Susan', 'Jill')
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Tuples
names = (“Bob”, “Susan”, “Jill”)
• A tuple has a length.  len(names) would evaluate 

to a result of 3

• You can loop through a tuple:

for name in names:
print (name)

• You can concatenate tuples:

names += (“Bill”, “Jack”)
print (names)

Prints as: ('Bob', 'Susan', 'Jill', 'Bill', 'Jack')

Bob

Susan

Jill
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Tuples
names = (“Bob”, “Susan”, “Jill”, “Bill”, “Jack”)

• You can use indices to get individual elements and 
slices of tuples, using the same syntax as with 
strings.

print(“First item :”, names[0])
print(“Second item :”, names[1])
print(“Last item :”, names[4])
print(“Last item:”, names[len(names)-1]

print (names[1:4])

Prints as: ('Susan', 'Jill', 'Bill')

• Just a slice of a string is a new string, a slice of a 
tuple is, in fact a new tuple

Bob

Susan

Jack

Jack



• The other details about sequence positions – such as 
negative indices – also apply to tuples

0    1  2 3     4 5

names    ‘Bob’ ‘Susan’ ‘Jill’ ‘Bill’ ‘Jack’
-5 -4 -3 -2 -1

• As with strings, a tuple is immutable.  Even if the 
individual items within the tuple are mutable, the tuple 
itself – as a structure – is not.  

• Tuple elements cannot be added, removed, or 
replaced.  

• As with strings, the most you can do is create a new
tuple out of other, existing ones.
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Tuples



• hero’s_inventory.py
 Simple example of the creation and use of tuples – namely, printing 

the tuple as a whole versus its individual elements

• hero’s_inventory2.py
 More complex example illustrating:

 Use of len() function
 Use of in operator
 Indexing
 Slicing
 Concatenation

• word_jumble.py

 Extended example of developing a program for a word game
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Examples using tuples:
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Lists

• One major limitation of tuples is their 
immutability

• It would be nice to have a sequence that you 
can actually change, rather than simply creating  
a new one each time

• Python also has a mutable sequence, in the form 
of the list – a structure very similar to tuples, 
but with many important differences.
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Creating Lists

• If you recall, you would create a tuple this way: 
names = (“Bob”, “Susan”, “Jill”)

• In contrast, you would create a list this way:

names = [“Bob”, “Susan”, “Jill”]

• In other words, the only difference in the syntax 
for creating is the pair of symbols encasing the 
sequence

variable = (first, second,..., last)

variable = [first, second,..., last]
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List Syntax

names = [“Bob”, Susan”, “Jill”]

len() function:

print (len(names))

in operator:

print (“Bob” in names)
concatenate:

names += [“Bill”, “Jack”]
get an item:

print (names[2])

get a slice:

print (names[1:4])

3

True

(new list)

Jill

['Susan','Jill','Bill']
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List Mutability

• However, the fact that lists are mutable means they 
have some additional options

names = [“Bob”, “Susan”, “Jill” , “Bill”, “Jack”]

Replace an item:

names[2] = “Jenny”
Replace a slice:

names[1:4] = ["Joe", "Sue”, “Rob”, “Jane”]
Delete an item:,

del names[2]

Delete a slice:

del names[1:4]

[“Bob”, “Susan”, “Jenny” , “Bill”, “Jack”]

[“Bob”, "Joe", "Sue”, “Rob”, “Jane”, “Jack”]

[“Bob”, "Joe", “Rob”, “Jane”, “Jack”]

[“Bob”, “Jack”]
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List Use and Methods

• We can see list mutability in action in the 
program hero’s_inventory3.py

• In addition, Python has several 
functions/methods you can use for manipulating 
lists.

• See high_scores.py

• The list methods used in that program – along 
with other methods – are in the textbook in 
Table 5.1 on page 132.
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Dictionaries

• In addition to sequences, another useful way to 
organize data is in terms of key-value pairings

• This is the case with a dictionary, where data is 
organized like so:

key1  value1

key2  value2 

key3  value3 ...

• You can then use a specific key to retrieve a particular 

value from the dictionary.
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Creating Dictionaries

key1  value1

key2  value2...
• Syntax:

variable = { first_key : first_value, 
second_key : second_value, ...
last_key : last_value }

• Keys must be of an immutable type, but values can be of any
type

• Each key in the dictionary must be unique; otherwise, 
duplicated keys would create ambiguity 
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Using Dictionaries

• Let’s create a dictionary:
info = { “name” : “John Doe”, 

“school” : “UMB”, 
“ID” : 12345, 
“GPA” : 3.7 }

• Now, we can…
Fetch a value by key:

print(“My name is: ” + info[“name”])

See if key exists:

print(“Has major: ” + str(“major” in info))

My name is: John Doe

Has major: False
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Using Dictionaries

“name”   “John Doe”
“school”    “UMB”
“ID”     12345
“GPA”    3.7

Add a new entry (key-value pair):

info[“major”] = “Comp. Sci.”

Replace an entry:

info[“major”] = “Art”

info

“name”   “John Doe”
“school” “UMB”
“ID”     12345
“GPA”    3.7
“major”   “Comp. Sci.”

“name”   “John Doe”
“school” “UMB”
“ID”     12345
“GPA”    3.7
“major”      “Art”
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Using Dictionaries

Delete an entry by key:

del info[“major”]

Fetch a value by key (with default):

print(“Major:” info.get(“major”, “Undeclared”)
Major: Undeclared

info
“name”   “John Doe”
“school” “UMB”
“ID”     12345
“GPA”    3.7
“major”      “Art”

“name”   “John Doe”
“school” “UMB”
“ID”     12345
“GPA”    3.7
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Dictionary Use and Methods

• We can see an extended example in the program   
geek_translator.py

• This program depicts the use of a dictionary to 
organize data about words and their definitions

• We see the dynamism of the structure

• Other dictionary methods can be seen in the 
textbook in Table 5.2 on page 148.
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Nested Structures

• We stated earlier that tuples, lists, and 
dictionaries can hold values of any type

• This means that those values can actually be 
other tuples, lists, and dictionaries!

• Nested structures can be very useful for keeping 
track of many pieces of data that are related to 
one another in some respect.

• Consider  high_scores2.py
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Example: Nested Dictionaries

book = { “title”   : “How to Program”,
“author”  : “John Doe”,
“pub_year” : 2016,
“chapters” : { 1 : “Printing Text”,

2 : “Making Strings”,
3 : “Using Variables” },

“price” : 27.50 }

• Variable book refers to a dictionary with the 
keys “title”, “author”, “pub_year”, 
“chapters”, and “price”

• However, the value at book[“chapters”] is 
another dictionary, with the keys 1, 2, and 3
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Example: Nested Dictionaries

book = { “title”   : “How to Program”,
“author”  : “John Doe”,
“pub_year” : 2016,
“chapters” : { 1 : “Printing Text”,

2 : “Making Strings”,
3 : “Using Variables” },

“price” : 27.50 }

• To get the title of the third chapter, we would use the 
following expression:

book[“chapters”][3]
• We could also add a fourth chapter:

book[“chapters”][4] = “Writing Expressions”
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Example: A Tuple of Dictionaries

books = ( 
{ “title”   : “How to Program”,
“author”   : “John Doe”,
“pub_year” : 2016,
“price” : 27.50           } ,

{ “title”   : “Calculus”,
“author”  : “Jane Doe”,
“pub_year” : 2015,
“price” : 39.95           } ,

{ “title”   : “Biology”,
“author”  : “Jim Doe”,
“pub_year” : 2016,
“price” : 87.29           } 

)

print (books[1][“price”])
print (books[2][“pub_year”])


