
1

Organizing Data

• Sequences

 Tuples

 Lists

• Dictionaries

• Reading for this Lecture

• Dawson, Chapter 4 (p. 104 to end) and 5

• http://introcs.cs.princeton.edu/python/14array

2

Keeping Track of Data

• So far, in our programs, we have treated data in our

programs as individual pieces, completely separate

from one another

• This has worked for now, but as our programs become

more complex, that will be impractical

• We are best served by finding ways to organize the

data in our programs – so that we can keep track of it.

• We want to be able to create, use, and modify it in a

predictable, logical manner.

3

Keeping Track of Data

• Python, like most programming languages, has a

number of structures that will aid us in this.

• In some respects, as you will see, some of these

structures are quite similar to one another.

• Despite this, they also have several differences, as well.

• For this reason, your program planning should include

knowing what structure you are using…
• …and why!

4

Strings Revisited

• One very obvious (and common) form of data

organization is the use of strings.

• After all, a string is actually a sequence of data points –
specifically, characters.

• Organizing the characters into this form allows us to

efficiently read, write, and modify text. We can:

 Combine strings

 Iterate (i.e., loop) through their characters

 Extract single characters

 Extract substrings

5

Sequences
• In fact, we can have sequences of any kind of data,

regardless of type.

• In addition to the string form – a sequence of
characters – we can also have sequences of:

 Numbers

 Booleans

 Strings

 Other sequences!

• After all, in Python, a sequence itself is an object

• In some programming languages, a sequence can
contain only items of a particular type.

• Python, however, is more flexible in this, as we will
see.

6

Tuples
• The most basic sequence in Python is probably the

tuple

• A tuple is more or less just like a string, except that it
can contain any kind of objects

• The syntax for creating a tuple is:

variable = (first, second,..., last)

• Examples:

names = (“Bob”, “Susan”, “Jill”)
id_numbers = (123, 456, 789)

booleans = (True, False, True)

items = (“Bob”, 456, True)

7

Tuples
• As with strings…

• A tuple can be empty. empty_tup = ()

• A tuple can be a condition. An empty tuple would
be considered False, while a non-empty one
would be considered True

• You can print a tuple

names = (“Bob”, “Susan”, “Jill”)
print(names)

Prints as: ('Bob', 'Susan', 'Jill')

8

Tuples
names = (“Bob”, “Susan”, “Jill”)
• A tuple has a length. len(names) would evaluate

to a result of 3

• You can loop through a tuple:

for name in names:
print (name)

• You can concatenate tuples:

names += (“Bill”, “Jack”)
print (names)

Prints as: ('Bob', 'Susan', 'Jill', 'Bill', 'Jack')

Bob

Susan

Jill

9

Tuples
names = (“Bob”, “Susan”, “Jill”, “Bill”, “Jack”)

• You can use indices to get individual elements and
slices of tuples, using the same syntax as with
strings.

print(“First item :”, names[0])
print(“Second item :”, names[1])
print(“Last item :”, names[4])
print(“Last item:”, names[len(names)-1]

print (names[1:4])

Prints as: ('Susan', 'Jill', 'Bill')

• Just a slice of a string is a new string, a slice of a
tuple is, in fact a new tuple

Bob

Susan

Jack

Jack

• The other details about sequence positions – such as
negative indices – also apply to tuples

0 1 2 3 4 5

names ‘Bob’ ‘Susan’ ‘Jill’ ‘Bill’ ‘Jack’
-5 -4 -3 -2 -1

• As with strings, a tuple is immutable. Even if the
individual items within the tuple are mutable, the tuple
itself – as a structure – is not.

• Tuple elements cannot be added, removed, or
replaced.

• As with strings, the most you can do is create a new
tuple out of other, existing ones.

10

Tuples

• hero’s_inventory.py
 Simple example of the creation and use of tuples – namely, printing

the tuple as a whole versus its individual elements

• hero’s_inventory2.py
 More complex example illustrating:

 Use of len() function
 Use of in operator
 Indexing
 Slicing
 Concatenation

• word_jumble.py

 Extended example of developing a program for a word game

11

Examples using tuples:

12

Lists

• One major limitation of tuples is their
immutability

• It would be nice to have a sequence that you
can actually change, rather than simply creating
a new one each time

• Python also has a mutable sequence, in the form
of the list – a structure very similar to tuples,
but with many important differences.

13

Creating Lists

• If you recall, you would create a tuple this way:
names = (“Bob”, “Susan”, “Jill”)

• In contrast, you would create a list this way:

names = [“Bob”, “Susan”, “Jill”]

• In other words, the only difference in the syntax
for creating is the pair of symbols encasing the
sequence

variable = (first, second,..., last)

variable = [first, second,..., last]

14

List Syntax

names = [“Bob”, Susan”, “Jill”]

len() function:

print (len(names))

in operator:

print (“Bob” in names)
concatenate:

names += [“Bill”, “Jack”]
get an item:

print (names[2])

get a slice:

print (names[1:4])

3

True

(new list)

Jill

['Susan','Jill','Bill']

15

List Mutability

• However, the fact that lists are mutable means they
have some additional options

names = [“Bob”, “Susan”, “Jill” , “Bill”, “Jack”]

Replace an item:

names[2] = “Jenny”
Replace a slice:

names[1:4] = ["Joe", "Sue”, “Rob”, “Jane”]
Delete an item:,

del names[2]

Delete a slice:

del names[1:4]

[“Bob”, “Susan”, “Jenny” , “Bill”, “Jack”]

[“Bob”, "Joe", "Sue”, “Rob”, “Jane”, “Jack”]

[“Bob”, "Joe", “Rob”, “Jane”, “Jack”]

[“Bob”, “Jack”]

16

List Use and Methods

• We can see list mutability in action in the
program hero’s_inventory3.py

• In addition, Python has several
functions/methods you can use for manipulating
lists.

• See high_scores.py

• The list methods used in that program – along
with other methods – are in the textbook in
Table 5.1 on page 132.

17

Dictionaries

• In addition to sequences, another useful way to
organize data is in terms of key-value pairings

• This is the case with a dictionary, where data is
organized like so:

key1  value1

key2  value2

key3  value3 ...

• You can then use a specific key to retrieve a particular

value from the dictionary.

18

Creating Dictionaries

key1  value1

key2  value2...
• Syntax:

variable = { first_key : first_value,
second_key : second_value, ...
last_key : last_value }

• Keys must be of an immutable type, but values can be of any
type

• Each key in the dictionary must be unique; otherwise,
duplicated keys would create ambiguity

19

Using Dictionaries

• Let’s create a dictionary:
info = { “name” : “John Doe”,

“school” : “UMB”,
“ID” : 12345,
“GPA” : 3.7 }

• Now, we can…
Fetch a value by key:

print(“My name is: ” + info[“name”])

See if key exists:

print(“Has major: ” + str(“major” in info))

My name is: John Doe

Has major: False

20

Using Dictionaries

“name” “John Doe”
“school” “UMB”
“ID” 12345
“GPA” 3.7

Add a new entry (key-value pair):

info[“major”] = “Comp. Sci.”

Replace an entry:

info[“major”] = “Art”

info

“name” “John Doe”
“school” “UMB”
“ID” 12345
“GPA” 3.7
“major” “Comp. Sci.”

“name” “John Doe”
“school” “UMB”
“ID” 12345
“GPA” 3.7
“major” “Art”

21

Using Dictionaries

Delete an entry by key:

del info[“major”]

Fetch a value by key (with default):

print(“Major:” info.get(“major”, “Undeclared”)
Major: Undeclared

info
“name” “John Doe”
“school” “UMB”
“ID” 12345
“GPA” 3.7
“major” “Art”

“name” “John Doe”
“school” “UMB”
“ID” 12345
“GPA” 3.7

22

Dictionary Use and Methods

• We can see an extended example in the program
geek_translator.py

• This program depicts the use of a dictionary to
organize data about words and their definitions

• We see the dynamism of the structure

• Other dictionary methods can be seen in the
textbook in Table 5.2 on page 148.

23

Nested Structures

• We stated earlier that tuples, lists, and
dictionaries can hold values of any type

• This means that those values can actually be
other tuples, lists, and dictionaries!

• Nested structures can be very useful for keeping
track of many pieces of data that are related to
one another in some respect.

• Consider high_scores2.py

24

Example: Nested Dictionaries

book = { “title” : “How to Program”,
“author” : “John Doe”,
“pub_year” : 2016,
“chapters” : { 1 : “Printing Text”,

2 : “Making Strings”,
3 : “Using Variables” },

“price” : 27.50 }

• Variable book refers to a dictionary with the
keys “title”, “author”, “pub_year”,
“chapters”, and “price”

• However, the value at book[“chapters”] is
another dictionary, with the keys 1, 2, and 3

25

Example: Nested Dictionaries

book = { “title” : “How to Program”,
“author” : “John Doe”,
“pub_year” : 2016,
“chapters” : { 1 : “Printing Text”,

2 : “Making Strings”,
3 : “Using Variables” },

“price” : 27.50 }

• To get the title of the third chapter, we would use the
following expression:

book[“chapters”][3]
• We could also add a fourth chapter:

book[“chapters”][4] = “Writing Expressions”

26

Example: A Tuple of Dictionaries

books = (
{ “title” : “How to Program”,
“author” : “John Doe”,
“pub_year” : 2016,
“price” : 27.50 } ,

{ “title” : “Calculus”,
“author” : “Jane Doe”,
“pub_year” : 2015,
“price” : 39.95 } ,

{ “title” : “Biology”,
“author” : “Jim Doe”,
“pub_year” : 2016,
“price” : 87.29 }

)

print (books[1][“price”])
print (books[2][“pub_year”])

