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Writing Functions

• What is a function?

• Function declaration and 

parameter passing

• Return values

• Objects as parameters

• Abstraction 

• Data scoping

• Encapsulation

• Modules

• Recursion

• Other topics• Reading:

• Dawson, Chapter 6

• http://introcs.cs.princeton.edu/python/21function/

• http://introcs.cs.princeton.edu/python/22module/

• http://introcs.cs.princeton.edu/python/23recursion
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Organizing Code

• We have recently discussed the topic of 

organizing data in order to make it more 

manageable

• Similarly, you can also organize your code into 

logical, related units 

• As you write code, you may find yourself 

frequently repeating a sequence of statements in 

order to accomplish a task

• In such cases, you will likely want to make those 

statements into a function.
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Why Functions?

• With simpler programs, separating groups of 

statements by white space may be enough

• However, as programs become more complex, 

numerous lines will be increasingly difficult to 

read, understand, and maintain.

• Also, it may become tedious to repeatedly type 

the same several lines of code.

• Creating functions allows you to make your code 

more organized and concise.

See instructions.py



4

What Is a Function?

• At the most basic level, a function is a named 

block of code that accomplishes a task

• When a function is invoked, the flow of control 

jumps to the function and executes its code

• When complete, the flow returns to the place 

where the function was called and continues

• The invocation may or may not return a value, 

depending on how the function is defined
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my_function()

my_functioncompute

Function Control Flow

If the called function is a Python built-in (or in 
the same code file), then likely only the 
function name is needed
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do_it help_me

help_me()do_it()

main code

Function Control Flow

• The called function may, in fact, call 
another function
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Creating Functions

• A function definition specifies the code that will be 

executed when the function is invoked (or 

"called").

• This definition has several components, some 

mandatory and some optional.

• At the very least, a function definition must have:

1. A header

2. A body

• With these requirements, there are variations
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Function Header

• A function definition begins with a function header

def calc (num1, num2, message):

function
name

reserved
word
“def”

parameter list

The parameter list specifies the 
name of each parameter

The name of a parameter in the 
function declaration and code is 
called a formal parameter

a colon :
symbol



9

Function Body

• The function header is followed by the function 

body
def calc (num1, num2, message):

sum = num1 + num2

result = message[sum]

return result

Make sure you know what
type of data your function
returns when called

• sum and result are local data

• They are created each time the 
function is called, and are destroyed
when it finishes executing

Be sure there is no 
conflict between 
your code and the 
parameter types
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Parameters

• When a function is called, the actual parameters
in the call are copied into the formal parameters
in the function header

def calc (num1, num2, message):

sum = num1 + num2

result = message[sum]

return result

ch = calc (25, count, "Hello")
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Objects as Parameters

• Another important issue related to function 
design involves parameter passing

• Since all data in Python are objects, that means 
parameters in a Python function are passed by 
reference

• When an object is passed to a function, the 
actual parameter and the formal parameter 
become aliases of each other – referring to the 
same object!

• For this reason, depending on the type of object, 
the function might change the object somehow.
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Passing Objects to functions

• What a function does with a parameter may or 
may not have a permanent effect on the object.  
Ex.: die_changer.py

• See also:

 parameter_tester.py
 parameter_modifier.py
 num.py

• Note the difference between changing the 
internal state of an object versus changing the 
value of a reference to point to a different object
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The return Statement

• In addition to carrying out a set of instructions, a 

function may also return a value

• In other words, a function call may have a value that 

can be used like any other value in an expression.

• A return statement specifies the value that will be 

returned upon completion of the function

return expression

• You must be aware of the possible return types

• Recall present_scores and final_scores

See receive and return.py
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Abstraction

• Functions bring up an important idea in 

programming: abstraction

• “Abstraction” refers to the idea of focusing on the 
general idea about something, rather than the 

specific details.

• For example, if you order food at a restaurant, you 

know how to place the order and receive your 

food…
• …but you probably do not know what is specifically 

happening, in the restaurant, behind the scenes.
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Abstraction
• Functions also exemplify the idea of abstraction.

• For example, consider the following code:

• There are many ways to sort a sequence.  When we call the 
sort function for my_list, we do not actually know what 

algorithm the sort function is using.

• All we know is its result: the list items being sorted 

• That is abstraction: We have an outside view but do not 

know (or care) what happens internally

>>> my_list = [5, 4, 3, 2, 1]

>>> my_list.sort()

>>> print (my_list)

[1, 2, 3, 4, 5]
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Data Scoping

• Recall that a variable is a named location in 

memory.  It does not exist until declared

• If you try to use a name for a variable that does 

not exist, then you will get an error.  At that 

particular point in your program, the name has 

no meaning to the interpreter

• This relates not only to whether the variable 

has been declared but also to where it has 

been declared. 
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Data Scoping

• Different parts of your program, that are 

considered separate from one another, are 

called scopes.

• Scopes in a program are of varying levels and 

degrees – from wider to narrower.

• A variable or function name – along with other 

identifiers – is only meaningful when 

created/used within a scope.

• Here, two levels of scope are of interest to us.
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Global Data

• So far, most of our work in programs has been 

in the global scope – the highest level of our 

code file.

• Consider these lines in a code file:

• The variables my_list and list_len would 

be global because you could use them at any 

level of the code, from that point forward.

my_list = ["Joe", "Sue", "Bill"]

list_len = len(my_list)

print ("My list:", my_list)

print ("Length:", list_len)
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Local Data

• Inside of a function's body, you have what is 

called the local scope.  It consists of:

1. The function's formal parameters

2. Any variables declared inside the function

• Here, for example…

• …the variables num1, num2, messages, sum, 

and result are all local variables.

def calc (num1, num2, messge):

sum = num1 + num2

result = message[sum]

return result 
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Local and Global Data

• When a function's code finishes, all local 

variables are destroyed (including the formal 

parameters) – and recreated the next time

• Previously created global variables may be 

used in the local scope, but local variables may 

only be used in their own scope.

• If you try to assign a value to a global variable 

within a local scope, you will actually be 

creating a new local variable (by the same 

name) without affecting the global variable
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Local and Global Data

• This is called shadowing because – within the 

local scope – the local variable is now "hiding" 

the global variable of the same name.

• The global variable's value will not change

• The only exception is if you use the reserved 
word global in order to claim full access to it

• See, for example, global_reach.py

• It is important to know when to use global data
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Encapsulation

• This, in turn, brings us to a topic important in many 

branches of programming: encapsulation

• “Encapsulation” is the quality of variables being 
inaccessible outside of a particular context.

• For example, in the following code…
def calc (num1, num2, message):

sum = num1 + num2

result = message[sum]

return result

ch = calc (1, 2, "Hello")

print (ch)

print (sum)
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Encapsulation
• …the last line print (sum) would create an error 

because it is being interpreted in the global scope, 
but sum is only a local variable.

• Recall, the entire idea of abstraction is to make 

problem-solving easier by taking focus away from 

the smaller details.

• Encapsulation, then, is an important aspect of 

abstraction precisely because it hides those details

• More importantly, this protects different parts of your 

code from one another
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Modules

• We have, in fact, already worked with modules quite 

a bit in this class.  For example, you may recall 

programs with lines such as:

import math

import random

import time

• At the most basic level, a module is a pre-existing 

body of code, that can be incorporated into other 

code by way of import statements.

• Once imported, you can access the needed 

constants and functions through the module name
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Modules

• In programming, there is a saying: "Do not reinvent 

the wheel."  In other words, if a good tool already 

exists, don't go build a new one to do the same

• Consider the problem of calculating a square root.  

The algorithm is quite complex and would be a 
challenge to code, but the math module already has 

the sqrt function:

import math

print ("The square root of 9 is", math.sqrt(9))

print ("The square root of 16 is", math.sqrt(16))

print ("The square root of 64 is", math.sqrt(64))
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Creating Modules

• There are many modules out there for Python.  

Some come with the interpreter, and some can be 

downloaded.

• In fact, you can write your own modules!  All you 

need to do is:

• Create a Python file named module_name.py

• Add code for functions and constants you wish to include

• In another code file, include the line 
• import module_name

• For the import to work, the module file must be 

accessible (for example, same folder)
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Recursion

• This topic is considered to be one of the more 

difficult ones in introductory programming – yet it is 

also an essential one.

• We will not emphasize it as much in this class, but 

you do need to have some understanding of what it 

entails and when to use it.

• You should start by trying to understand the simpler 

examples, before tackling more complex ones

• When using recursion, you should do so mindfully.
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Recursion

• To start with, think about situations in which smaller

units are combined into larger – but similar – units.

• Some examples we will consider:

• A file system

• A family tree

• A discussion thread (e.g., reddit.com)

• Factorials

• The Fibonacci sequence
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Recursion (Factorials)

• The factorial of a positive number is the product of 

all the integers between 1 and itself. The factorial of 

integer n is denoted as n! For example:

1! = 1

2! = 2 * 1

3! = 3 * 2 * 1

4! = 4 * 3 * 2 * 1

5! = 5 * 4 * 3 * 2 * 1

n! = n * (n-1) * (n-2) * … * 2 * 1
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Recursion (Factorials)

• Looking at this, you may notice a pattern:

1! = 1

2! = 2 * 1

3! = 3 * 2 * 1

4! = 4 * 3 * 2 * 1

5! = 5 * 4 * 3 * 2 * 1

n! = n * (n-1) * (n-2) * … * 2 * 1
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Recursion (Factorials)

• Therefore, you could also express these in the 

following manner:

1! = 1

2! = 2 * 1!

3! = 3 * 2!

4! = 4 * 3!

5! = 5 * 4!

n! = n * (n-1)!
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Recursion (Factorials)

• Part of the solution is, in fact, the solution to a 

smaller but similar problem.

• As such, you could write a function to compute a 

factorial like this:

• This is a recursive function because it calls itself!

• Notice that factorial(1) is special and simply returns 1

def factorial (number):

if number < 2:

return 1

else:

return number * factorial (number – 1)
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Recursion (Factorials)

• If you called factorial (5), then the flow of control 

would look like this:

factorial (5)

5 * factorial (4)

4 * factorial (3)

3 * factorial (2)

2 * factorial (1)

1
2

6
24

120

print (factorial (5))

>> 120
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Recursion (Fibonacci sequence)

• The Fibonacci sequence is series of numbers 
beginning with 1 and 1, where each subsequent 

number is the sum of the two previous.  If we call 

the nth Fibonacci number f(n), then…
f(1) =              1

f(2) =              1

f(3) = 1 + 1 =  2

f(4) = 1 + 2 = 3

f(5) = 2 + 3 =  5

f(6) = 3 + 5 = 8

f(7) = 5 + 8 = 13

f(8) = 8 + 13 =  21

…
f(n) = f(n-1) + f(n-2)
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Recursion (Fibonacci sequence)

• A function to compute the nth Fibonacci number 

could look like this:

• Again, notice there are special cases (when num is 

2 or less) where the function does not call itself but, 

instead, simply returns a value

• Let's look at the following example…

def fibonacci (num):

if num <= 2:

return 1

else:

return fibonacci(num–1) + fibonacci(num–1)
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Recursion (Fibonacci sequence)

fibonacci(5)

fibonacci(4) fibonacci(3)

fibonacci(2) fibonacci(1)

• Let's compute the 5th Fibonacci number:

fibonacci(2)fibonacci(3)

fibonacci(2)

fibonacci(1)

1

1

1 11
2

23

5

print (fibonacci(5))

>> 5
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Recursion – Concerns and Warnings

• The idea behind recursion is solving a problem by 

breaking it down into simpler sub-problems and 

combining the solutions.

• Eventually, this breaking down should stop, when 

you reach the simplest form of the problem.  For 

example: 

 The factorial of 1 is simply 1

 The first and second Fibonacci numbers are 1

• At this level, the solution is simple, requiring no 

further recursion.
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Recursion – Concerns and Warnings

• These – 1! and f(1) and f(2) – are examples of base 

cases in recursion

• That is, problems so small that solving them does 

not require calling the function again.

• A recursive function must have base cases so that 

the function will eventually terminate

• Otherwise, you will have infinite recursion.

• Just as you must make sure a loop eventually 

terminates, you must also make sure your function 

eventually stops calling itself
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Recursion – Concerns and Warnings

• Also, when considering a recursive solution, you 

should ask yourself if it is the best option.

• Even if the recursion terminates, it may be 

undesirable in other respects.

• Consider fibonacci.py

 It pauses for 10 milliseconds before returning

 Lower Fibonacci numbers, such as f(5), are fast

 However, higher ones like f(10) take much longer to 

finish calculating.

 This is because the number of calculations, many of 

which are repeated, increases exponentially!
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Recursion – Concerns and Warnings

• Here, the recursive solution consumes more...

 Time – because more calculations must take place

 Memory – because results are being saved in memory 

before finally being recombined into a final solution

• As such, this is a scenario where you would want to 

find a more efficient solution.  Here, we will consider 

two such solutions:

 Memoization

 Iteration
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Recursion Alternative – Memoization

• Memoization refers to the practice of storing the 

results of previous calculations.

• This is very applicable to the Fibonacci numbers, 

where many of the recursive function calls repeat 

previous calculations.  Consider fibonacci_dict.py

 Here, we create an empty dictionary

 Every time we calculate the nth Fibonacci number, we 

add an entry to the dictionary, with n as the key

 Thus, if the dictionary already contains the nth Fibonacci 

number, then we simply fetch it

 f(15), for example, will not require us to recalculate f(13) 
and f(14)
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Recursion Alternative – Iteration

• Iteration simply means repetition or looping.

• Calculating f(n) simply requires the values of f(n-1) 
and f(n-2), so we could just use three variables and 

a loop.  Consider fibonacci_loop.py

 We have variables for three different values: the result, 

f(n-1), and f(n-2)

 Every time we calculate the nth Fibonacci number, 

overwrite the values for the two previous and store the 

current in the result variable.

 Like the dictionary version, calculating one value does 

not require the recalculation of previous results, so it is 

much quicker!
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Recursion – When to Use It

• That said, there will be several scenarios where a 

recursive option is superior.

• Recursion reduces the problem size.

 Searching a sorted sequence

• The recursive option is more intuitive (without 

being inefficient in implementation)

 Exploring a tree structure

• The recursive option is more efficient

 Sorting an unsorted sequence

• It's a case where you'll have to make a decision…
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Other Topics in Functions

• Docstrings:

 As the first line in your function, you can include a triple-

quoted comment about the function.

 It will not directly affect the function's behavior, but…
 …it can be helpful to you and other coders.
 Some IDEs, such as IDLE, may make use of it.

• Positions of parameters:

• Normally, when calling a function, you must provide the 

right number of values in the right order

• At runtime, Python will attempt to interpret the call
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Other Topics in Functions

• Positions of parameters:

• Supplying parameters incorrectly can create runtime 

and/or logic errors

• However, there are other options, as well

• Keyword arguments:

• If you know the formal parameters' names, then you can 

supply keyword arguments.  Consider this method:

• To start with, let's look at standard behavior…

def full_name(first, last):

return first + " " + last
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Other Topics in Functions

• Keyword arguments:

print (full_name ("John", "Doe"))

print (full_name ("Doe", "John"))

• However, this…
print (full_name (last="Doe", first="John"))

will print as…

def full_name(first, last):

return first + " " + last

John Doe

Doe John

John Doe
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Other Topics in Functions

• Keyword arguments:

print (full_name (last="Doe", first="John"))

• Here, the keywords override the order of the parameters

• If you use keywords for one parameter, then you must use 

them for all parameters! 

• Default parameter values:

• When writing a function, you may find it helpful to assign 

default values for the parameters

• This can make the function simpler to use…

def full_name(first, last):

return first + " " + last
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Other Topics in Functions

• Default parameter values:

• This can make the function simpler to use…

• …while also providing some degree of flexibility

• Consider this variation on the full_name function:

• You can use the parameters in many ways and have the 

function behave differently

• Call with no values; use all default values:

def full_name(first="John", last="Doe"):

return first + " " + last
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Other Topics in Functions

• Default parameter values:

• Supply both parameters without keywords (will impose 

order of formal parameter list):

• Supply both parameters with keywords:

def full_name(first="John", last="Doe"):

return first + " " + last
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Other Topics in Functions

• Default parameter values:

• Supply both parameters with keywords (keywords 

override the order):

• Supply one parameter and allow default for other:

def full_name(first="John", last="Doe"):

return first + " " + last


