
1

Writing Functions

• What is a function?

• Function declaration and

parameter passing

• Return values

• Objects as parameters

• Abstraction

• Data scoping

• Encapsulation

• Modules

• Recursion

• Other topics• Reading:

• Dawson, Chapter 6

• http://introcs.cs.princeton.edu/python/21function/

• http://introcs.cs.princeton.edu/python/22module/

• http://introcs.cs.princeton.edu/python/23recursion

2

Organizing Code

• We have recently discussed the topic of

organizing data in order to make it more

manageable

• Similarly, you can also organize your code into

logical, related units

• As you write code, you may find yourself

frequently repeating a sequence of statements in

order to accomplish a task

• In such cases, you will likely want to make those

statements into a function.

3

Why Functions?

• With simpler programs, separating groups of

statements by white space may be enough

• However, as programs become more complex,

numerous lines will be increasingly difficult to

read, understand, and maintain.

• Also, it may become tedious to repeatedly type

the same several lines of code.

• Creating functions allows you to make your code

more organized and concise.

See instructions.py

4

What Is a Function?

• At the most basic level, a function is a named

block of code that accomplishes a task

• When a function is invoked, the flow of control

jumps to the function and executes its code

• When complete, the flow returns to the place

where the function was called and continues

• The invocation may or may not return a value,

depending on how the function is defined

5

my_function()

my_functioncompute

Function Control Flow

If the called function is a Python built-in (or in
the same code file), then likely only the
function name is needed

6

do_it help_me

help_me()do_it()

main code

Function Control Flow

• The called function may, in fact, call
another function

7

Creating Functions

• A function definition specifies the code that will be

executed when the function is invoked (or

"called").

• This definition has several components, some

mandatory and some optional.

• At the very least, a function definition must have:

1. A header

2. A body

• With these requirements, there are variations

8

Function Header

• A function definition begins with a function header

def calc (num1, num2, message):

function
name

reserved
word
“def”

parameter list

The parameter list specifies the
name of each parameter

The name of a parameter in the
function declaration and code is
called a formal parameter

a colon :
symbol

9

Function Body

• The function header is followed by the function

body
def calc (num1, num2, message):

sum = num1 + num2

result = message[sum]

return result

Make sure you know what
type of data your function
returns when called

• sum and result are local data

• They are created each time the
function is called, and are destroyed
when it finishes executing

Be sure there is no
conflict between
your code and the
parameter types

10

Parameters

• When a function is called, the actual parameters
in the call are copied into the formal parameters
in the function header

def calc (num1, num2, message):

sum = num1 + num2

result = message[sum]

return result

ch = calc (25, count, "Hello")

11

Objects as Parameters

• Another important issue related to function
design involves parameter passing

• Since all data in Python are objects, that means
parameters in a Python function are passed by
reference

• When an object is passed to a function, the
actual parameter and the formal parameter
become aliases of each other – referring to the
same object!

• For this reason, depending on the type of object,
the function might change the object somehow.

12

Passing Objects to functions

• What a function does with a parameter may or
may not have a permanent effect on the object.
Ex.: die_changer.py

• See also:

 parameter_tester.py
 parameter_modifier.py
 num.py

• Note the difference between changing the
internal state of an object versus changing the
value of a reference to point to a different object

13

The return Statement

• In addition to carrying out a set of instructions, a

function may also return a value

• In other words, a function call may have a value that

can be used like any other value in an expression.

• A return statement specifies the value that will be

returned upon completion of the function

return expression

• You must be aware of the possible return types

• Recall present_scores and final_scores

See receive and return.py

14

Abstraction

• Functions bring up an important idea in

programming: abstraction

• “Abstraction” refers to the idea of focusing on the
general idea about something, rather than the

specific details.

• For example, if you order food at a restaurant, you

know how to place the order and receive your

food…
• …but you probably do not know what is specifically

happening, in the restaurant, behind the scenes.

15

Abstraction
• Functions also exemplify the idea of abstraction.

• For example, consider the following code:

• There are many ways to sort a sequence. When we call the
sort function for my_list, we do not actually know what

algorithm the sort function is using.

• All we know is its result: the list items being sorted

• That is abstraction: We have an outside view but do not

know (or care) what happens internally

>>> my_list = [5, 4, 3, 2, 1]

>>> my_list.sort()

>>> print (my_list)

[1, 2, 3, 4, 5]

16

Data Scoping

• Recall that a variable is a named location in

memory. It does not exist until declared

• If you try to use a name for a variable that does

not exist, then you will get an error. At that

particular point in your program, the name has

no meaning to the interpreter

• This relates not only to whether the variable

has been declared but also to where it has

been declared.

17

Data Scoping

• Different parts of your program, that are

considered separate from one another, are

called scopes.

• Scopes in a program are of varying levels and

degrees – from wider to narrower.

• A variable or function name – along with other

identifiers – is only meaningful when

created/used within a scope.

• Here, two levels of scope are of interest to us.

18

Global Data

• So far, most of our work in programs has been

in the global scope – the highest level of our

code file.

• Consider these lines in a code file:

• The variables my_list and list_len would

be global because you could use them at any

level of the code, from that point forward.

my_list = ["Joe", "Sue", "Bill"]

list_len = len(my_list)

print ("My list:", my_list)

print ("Length:", list_len)

19

Local Data

• Inside of a function's body, you have what is

called the local scope. It consists of:

1. The function's formal parameters

2. Any variables declared inside the function

• Here, for example…

• …the variables num1, num2, messages, sum,

and result are all local variables.

def calc (num1, num2, messge):

sum = num1 + num2

result = message[sum]

return result

20

Local and Global Data

• When a function's code finishes, all local

variables are destroyed (including the formal

parameters) – and recreated the next time

• Previously created global variables may be

used in the local scope, but local variables may

only be used in their own scope.

• If you try to assign a value to a global variable

within a local scope, you will actually be

creating a new local variable (by the same

name) without affecting the global variable

21

Local and Global Data

• This is called shadowing because – within the

local scope – the local variable is now "hiding"

the global variable of the same name.

• The global variable's value will not change

• The only exception is if you use the reserved
word global in order to claim full access to it

• See, for example, global_reach.py

• It is important to know when to use global data

22

Encapsulation

• This, in turn, brings us to a topic important in many

branches of programming: encapsulation

• “Encapsulation” is the quality of variables being
inaccessible outside of a particular context.

• For example, in the following code…
def calc (num1, num2, message):

sum = num1 + num2

result = message[sum]

return result

ch = calc (1, 2, "Hello")

print (ch)

print (sum)

23

Encapsulation
• …the last line print (sum) would create an error

because it is being interpreted in the global scope,
but sum is only a local variable.

• Recall, the entire idea of abstraction is to make

problem-solving easier by taking focus away from

the smaller details.

• Encapsulation, then, is an important aspect of

abstraction precisely because it hides those details

• More importantly, this protects different parts of your

code from one another

24

Modules

• We have, in fact, already worked with modules quite

a bit in this class. For example, you may recall

programs with lines such as:

import math

import random

import time

• At the most basic level, a module is a pre-existing

body of code, that can be incorporated into other

code by way of import statements.

• Once imported, you can access the needed

constants and functions through the module name

25

Modules

• In programming, there is a saying: "Do not reinvent

the wheel." In other words, if a good tool already

exists, don't go build a new one to do the same

• Consider the problem of calculating a square root.

The algorithm is quite complex and would be a
challenge to code, but the math module already has

the sqrt function:

import math

print ("The square root of 9 is", math.sqrt(9))

print ("The square root of 16 is", math.sqrt(16))

print ("The square root of 64 is", math.sqrt(64))

26

Creating Modules

• There are many modules out there for Python.

Some come with the interpreter, and some can be

downloaded.

• In fact, you can write your own modules! All you

need to do is:

• Create a Python file named module_name.py

• Add code for functions and constants you wish to include

• In another code file, include the line
• import module_name

• For the import to work, the module file must be

accessible (for example, same folder)

27

Recursion

• This topic is considered to be one of the more

difficult ones in introductory programming – yet it is

also an essential one.

• We will not emphasize it as much in this class, but

you do need to have some understanding of what it

entails and when to use it.

• You should start by trying to understand the simpler

examples, before tackling more complex ones

• When using recursion, you should do so mindfully.

28

Recursion

• To start with, think about situations in which smaller

units are combined into larger – but similar – units.

• Some examples we will consider:

• A file system

• A family tree

• A discussion thread (e.g., reddit.com)

• Factorials

• The Fibonacci sequence

29

Recursion (Factorials)

• The factorial of a positive number is the product of

all the integers between 1 and itself. The factorial of

integer n is denoted as n! For example:

1! = 1

2! = 2 * 1

3! = 3 * 2 * 1

4! = 4 * 3 * 2 * 1

5! = 5 * 4 * 3 * 2 * 1

n! = n * (n-1) * (n-2) * … * 2 * 1

30

Recursion (Factorials)

• Looking at this, you may notice a pattern:

1! = 1

2! = 2 * 1

3! = 3 * 2 * 1

4! = 4 * 3 * 2 * 1

5! = 5 * 4 * 3 * 2 * 1

n! = n * (n-1) * (n-2) * … * 2 * 1

31

Recursion (Factorials)

• Therefore, you could also express these in the

following manner:

1! = 1

2! = 2 * 1!

3! = 3 * 2!

4! = 4 * 3!

5! = 5 * 4!

n! = n * (n-1)!

32

Recursion (Factorials)

• Part of the solution is, in fact, the solution to a

smaller but similar problem.

• As such, you could write a function to compute a

factorial like this:

• This is a recursive function because it calls itself!

• Notice that factorial(1) is special and simply returns 1

def factorial (number):

if number < 2:

return 1

else:

return number * factorial (number – 1)

33

Recursion (Factorials)

• If you called factorial (5), then the flow of control

would look like this:

factorial (5)

5 * factorial (4)

4 * factorial (3)

3 * factorial (2)

2 * factorial (1)

1
2

6
24

120

print (factorial (5))

>> 120

34

Recursion (Fibonacci sequence)

• The Fibonacci sequence is series of numbers
beginning with 1 and 1, where each subsequent

number is the sum of the two previous. If we call

the nth Fibonacci number f(n), then…
f(1) = 1

f(2) = 1

f(3) = 1 + 1 = 2

f(4) = 1 + 2 = 3

f(5) = 2 + 3 = 5

f(6) = 3 + 5 = 8

f(7) = 5 + 8 = 13

f(8) = 8 + 13 = 21

…
f(n) = f(n-1) + f(n-2)

35

Recursion (Fibonacci sequence)

• A function to compute the nth Fibonacci number

could look like this:

• Again, notice there are special cases (when num is

2 or less) where the function does not call itself but,

instead, simply returns a value

• Let's look at the following example…

def fibonacci (num):

if num <= 2:

return 1

else:

return fibonacci(num–1) + fibonacci(num–1)

36

Recursion (Fibonacci sequence)

fibonacci(5)

fibonacci(4) fibonacci(3)

fibonacci(2) fibonacci(1)

• Let's compute the 5th Fibonacci number:

fibonacci(2)fibonacci(3)

fibonacci(2)

fibonacci(1)

1

1

1 11
2

23

5

print (fibonacci(5))

>> 5

37

Recursion – Concerns and Warnings

• The idea behind recursion is solving a problem by

breaking it down into simpler sub-problems and

combining the solutions.

• Eventually, this breaking down should stop, when

you reach the simplest form of the problem. For

example:

 The factorial of 1 is simply 1

 The first and second Fibonacci numbers are 1

• At this level, the solution is simple, requiring no

further recursion.

38

Recursion – Concerns and Warnings

• These – 1! and f(1) and f(2) – are examples of base

cases in recursion

• That is, problems so small that solving them does

not require calling the function again.

• A recursive function must have base cases so that

the function will eventually terminate

• Otherwise, you will have infinite recursion.

• Just as you must make sure a loop eventually

terminates, you must also make sure your function

eventually stops calling itself

39

Recursion – Concerns and Warnings

• Also, when considering a recursive solution, you

should ask yourself if it is the best option.

• Even if the recursion terminates, it may be

undesirable in other respects.

• Consider fibonacci.py

 It pauses for 10 milliseconds before returning

 Lower Fibonacci numbers, such as f(5), are fast

 However, higher ones like f(10) take much longer to

finish calculating.

 This is because the number of calculations, many of

which are repeated, increases exponentially!

40

Recursion – Concerns and Warnings

• Here, the recursive solution consumes more...

 Time – because more calculations must take place

 Memory – because results are being saved in memory

before finally being recombined into a final solution

• As such, this is a scenario where you would want to

find a more efficient solution. Here, we will consider

two such solutions:

 Memoization

 Iteration

41

Recursion Alternative – Memoization

• Memoization refers to the practice of storing the

results of previous calculations.

• This is very applicable to the Fibonacci numbers,

where many of the recursive function calls repeat

previous calculations. Consider fibonacci_dict.py

 Here, we create an empty dictionary

 Every time we calculate the nth Fibonacci number, we

add an entry to the dictionary, with n as the key

 Thus, if the dictionary already contains the nth Fibonacci

number, then we simply fetch it

 f(15), for example, will not require us to recalculate f(13)
and f(14)

42

Recursion Alternative – Iteration

• Iteration simply means repetition or looping.

• Calculating f(n) simply requires the values of f(n-1)
and f(n-2), so we could just use three variables and

a loop. Consider fibonacci_loop.py

 We have variables for three different values: the result,

f(n-1), and f(n-2)

 Every time we calculate the nth Fibonacci number,

overwrite the values for the two previous and store the

current in the result variable.

 Like the dictionary version, calculating one value does

not require the recalculation of previous results, so it is

much quicker!

43

Recursion – When to Use It

• That said, there will be several scenarios where a

recursive option is superior.

• Recursion reduces the problem size.

 Searching a sorted sequence

• The recursive option is more intuitive (without

being inefficient in implementation)

 Exploring a tree structure

• The recursive option is more efficient

 Sorting an unsorted sequence

• It's a case where you'll have to make a decision…

44

Other Topics in Functions

• Docstrings:

 As the first line in your function, you can include a triple-

quoted comment about the function.

 It will not directly affect the function's behavior, but…
 …it can be helpful to you and other coders.
 Some IDEs, such as IDLE, may make use of it.

• Positions of parameters:

• Normally, when calling a function, you must provide the

right number of values in the right order

• At runtime, Python will attempt to interpret the call

45

Other Topics in Functions

• Positions of parameters:

• Supplying parameters incorrectly can create runtime

and/or logic errors

• However, there are other options, as well

• Keyword arguments:

• If you know the formal parameters' names, then you can

supply keyword arguments. Consider this method:

• To start with, let's look at standard behavior…

def full_name(first, last):

return first + " " + last

46

Other Topics in Functions

• Keyword arguments:

print (full_name ("John", "Doe"))

print (full_name ("Doe", "John"))

• However, this…
print (full_name (last="Doe", first="John"))

will print as…

def full_name(first, last):

return first + " " + last

John Doe

Doe John

John Doe

47

Other Topics in Functions

• Keyword arguments:

print (full_name (last="Doe", first="John"))

• Here, the keywords override the order of the parameters

• If you use keywords for one parameter, then you must use

them for all parameters!

• Default parameter values:

• When writing a function, you may find it helpful to assign

default values for the parameters

• This can make the function simpler to use…

def full_name(first, last):

return first + " " + last

48

Other Topics in Functions

• Default parameter values:

• This can make the function simpler to use…

• …while also providing some degree of flexibility

• Consider this variation on the full_name function:

• You can use the parameters in many ways and have the

function behave differently

• Call with no values; use all default values:

def full_name(first="John", last="Doe"):

return first + " " + last

49

Other Topics in Functions

• Default parameter values:

• Supply both parameters without keywords (will impose

order of formal parameter list):

• Supply both parameters with keywords:

def full_name(first="John", last="Doe"):

return first + " " + last

50

Other Topics in Functions

• Default parameter values:

• Supply both parameters with keywords (keywords

override the order):

• Supply one parameter and allow default for other:

def full_name(first="John", last="Doe"):

return first + " " + last

