
Files and Errors

• Interacting with Files

• File Access

• Reading from Text Files

• Writing to Text Files

• Reading and Writing Complex Data Files

• Exception Handling

• Different Techniques

• Reading:
• Dawson, Chapter 7

• http://introcs.cs.princeton.edu/python/15inout

Interacting with Files

•So far, we have been writing our programs in a way that
we have directly supply our data. The data is either…
Defined within the code itself (i.e., stored in variables), or…
…generated during code execution (for example, from user

input)

•Regardless, the data disappears after the program quits.

•For our purposes, this has not usually been a problem
because our programs have not needed to keep data
between program runs

Interacting with Files

•However, for most programs to be useful, they need to be
able to load and unload data from records.

• This quality – where data is taken from a source when the
program starts and the source updated before termination –
can be considered a form of data persistence.

•One important way of keeping persistent data is to save it in
files. This provides a number of important benefits:
Allows us to maintain records of changeable information

Further emphasizes the separation of data from program logic.

Some tasks can be automated – or at least made more efficient – by
providing the required information in data files.

File Access

•Here, we will see this done with both plain text files (usual
extension: .txt) and binary data files (one extension: .dat)

• Interacting with plain text files will be much simpler and
provide the added benefit of being able to read the data directly
by opening the file in a text editor.

• For interacting with a text file, you will need to know where it is
located on your system – in other words, which folder – so that
you can direct Python to it.

• This piece of information is called a file path. It can be
expressed in either of two forms…

File Access

• Absolute path: Consists of the full location, all the way up to and
including the main drive. Examples:
• Windows: C:\Users\John\Documents\Classes\CS110\file.txt

• Linux: /home/john/documents/classes/cs110/file.txt

• Relative: Where the path is expressed according to its location
relative to the current directory. Examples (assume your current
directory is a sibling directory of “Classes”/“classes”):
• Windows: ..\Classes\CS110\file.txt

• Linux: ../classes/cs110/file.txt

• For the relative file paths, the two dots .. mean "the parent
directory of the current".

File Access

• Similarly, you could use a single dot . to indicate "the current
directory"

•Notice the difference between file path styles in Windows
versus a Linux system.

 Windows uses back-slashes as separators, while Linux uses
forward-slashes.

When you supply a file path to Python, you will provide it in string
form.

Since back-slashes are special characters in a string, you will need
to escape it using another back-slash.

File Access

As such, a file path in string form might look something like this:
"C:\\Users\\Documents\\John\\Classes\\CS110\\file.txt"

This should not be an issue when providing a Linux-style file path

• If you decide to use relative file paths, consider that when Python is
running a program, the “current directory” is usually the one where
the code file is located.

• Therefore, the file path must be relative to that directory.

• If the file is in the same folder, then you need only provide the file
name itself. Example: "file.txt"

File Access

•Once you do this, you will have a number of options for
opening the file for reading or writing.

• The simplest way to open a file is the open function, with the
file path as a parameter.
my_file = open ("file.txt")

•You may also specify a parameter to open the file for a
specific purpose. This, for example, will open the file for
reading:
my_file = open ("file.txt", "r")

File Access

•You may see other such parameters in the textbook and in
code examples.

• The open function is a Python built-in, and it returns to you a
file object. This object will have various functions related to
reading from and writing to that file.

• In addition to completing Homework 10, you may also find it
helpful to simply experiment with file objects and their
functions.

Reading from Text Files

•Your file object will offer a number of functions and
techniques for reading the file data.

• The simplest will be the read function, using no parameters,
which returns the entire file text as one large string object

file_text = my_file.read()

• In class, you may have seen me execute code in Sublime Text
in the following manner:

exec (open ("code_file.py").read())

Reading from Text Files

• The open function opens the file for reading, the read function returns the code as
a large multi-line string, and the exec function interprets the string contents as
Python code – just like it would code you type in at the command line.

• In addition, you may read the file text by one character or more at a time. The
following sequence of commands….

print (my_file.read (5))

print (my_file.read (7))

print (my_file.read (5))

• …will read and print the first five characters, followed by the next seven, followed
by the next five. Here, the read function returns a sequence of characters as a
string.

• The file object remembers your “place” in reading

Reading from Text Files

• You may also read the file line by line, getting each line as a string.
The following code will print the next five lines of the file:

for i in range (5):
print (my_file.readline())

• In addition, you may read the line text by one character or more at a
time. The following sequence of commands….

print (my_file.readline (5))

print (my_file.readline (7))

print (my_file.readline (5))

• …will read and print the first five characters of the current line,
followed by the next seven, followed by the next five. Again, the read
function returns the characters as a string.

Reading from Text Files

• As before, the file object remembers your “place” in reading
• If you read a number of characters larger than there are remaining in

the line, then it will simply give you back the rest of the current line –
but none of the next!

• If there is no line left in the file to read, then the readline function will
return an empty string.

• Finally, you can use the readlines function to get a list of all the
(remaining) lines in the file. The following sequence of commands….

for line in my_file.readlines():

print(line)

• …will read and print the rest of the lines in the file.

Reading from Text Files

• An alternative to the above syntax:
for line in my_file:

print(line)

• In this case, it is as if you are "looping through the file"

• Don't forget to close the file afterward: my_file.close()

• This is important for at least two reasons:

• On one hand, it is simply good programming practice. If you open a file, then
you should remember to close it.

• Also, closing a file makes it possible for you to re-open it and start on it from
the beginning.

• This will also apply to writing files.

Writing to Text Files

• Similarly, file object also offers some functions and
techniques for writing to a file.

• To start with, you will have to open a file for writing. You
can do that like this:

out_file = open ("out_file.txt", "w")

• If the file does not exist, then it will be created. If it does,
then it is replaced by a new, empty file of the same name.

• The simplest way to write to the file will be the write
function, using a string of text as your parameter.

Writing to Text Files

• For example:

out_file.write("This is some text\n")

•Notice the inclusion of the newline character. This is because
the write function writes the exact characters specified by
you, into the file.

• If you do not include the newline characters yourself, then all
the text will be written to a single line.

•As with reading, the file object will remember your place in
writing. Any further text written to the file will begin where
the last text ended.

Writing to Text Files

• The following sequence of statements….
out_file.write("This is line #1\n")

out_file.write("This is line #2\n")

out_file.write("This is line #3\n\n")

out_file.write("This is the last line...")

out_file.close()

•…executed on an empty file, leaves the file looking like this:
This is line #1

This is line #2

This is line #3

This is the last line...

Writing to Text Files

•Also, the writelines function takes a list of strings as a
parameter and writes them all to the file. For example:
lines = ["This is line #1\n",

"This is line #2\n",

"This is line #3\n\n",
"This is the last line..."]

• If out_file is empty, then these statements...
out_file.writelines(lines)

out_file.close()

Writing to Text Files

• ...will leave the file looking like this:
This is line #1
This is line #2
This is line #3

This is the last line...

•As with reading a file, you should close the file once you are
finished with it.

• For more ways to open a file, check out Table 7.1 on page
193 of the textbook. To add text to an existing file, rather
than overwriting it, use the "a" option when opening the file.

Reading and Writing Binary Data Files

• Text files can be very useful as a basic way of storing data in files and
retrieving it later.

• However, when that data requires more complex operations to be
translated to and from file text, this will become more burdensome.

• For example, it might involve interpreting and transforming the data.

• Fortunately, Python offers us at least two ways to preserve data in files
without having to worry about the smaller details.

• Here, we will look at pickling and shelving. As you will see, these
techniques store data in .dat files, rather than .txt

• As such, you will usually not be able to open and read .dat files as
you would .txt files.

Pickling

• The term is a reference to the process of preserving food via either
submersion in vinegar or fermentation in salt water.

• In Python, pickling entails preserving a data object by writing the
object itself to a file, so that it can be retrieved later.

• To start with, you will have to import the pickle module:
import pickle

• Also, you should have a data object, such as a list or dictionary

• Then, you must open a file for binary writing, which entails a variation
on our previous use of the open function:
storage = open ("storage_file.dat", "wb")

• This will open the file for writing data in binary form.

Pickling

• From here onwards, the code will be different from what we've seen
before

• To pickle an object, you will need to use the pickle.dump function

• Let's say you have a list...
sweets = ["cookies", "pies", "cakes", "muffins",
"candy"]

• ...and you want to pickle it. With the previously declared variables,
you would use a statement like this:
pickle.dump (sweets, storage)

storage.close()

• As before, you should close a file explicitly, after you are done with it.

Pickling

• Later, if you wanted to use that same list in this or another program,
you would use the pickle.load function to retrieve the data (unpickle
it) as a list object:
storage = open ("storage_file.dat", "rb")

• This will open the file for reading data in binary form. Then, you
could fetch the next object stored in the file:
desserts = pickle.load (storage)

• This, of course, requires knowing in advance the order in which the
data objects were added to the file, in the first place.

• See Table 7.4 on page 203

• Many different types of objects can be pickled and unpickled.
Experiment with some and see what happens.

Shelving

• Next, we have shelving, which is like pickling -- but a bit more
sophisticated.

• To use shelving, your program must first import the shelve module:
import shelve

• It works with a shelf object, which is based on a .dat file.

• To get this object, you would use a statement like the following:
shelf = shelve.open("shelf_file.dat", "c")

• The parameter "c" indicates that, if the file does not already exist,
then it should be created. Though we will not go into it here, see
Table 7.5 on page 204 for more access modes.

Shelving

• The variable shelf will now contain a shelf object, which you can
interact with much as you would a dictionary object:
shelf["desserts"] = ["cookies", "pies", "cakes", "muffins",
"candy"]
shelf["fruits"] = ["apples", "oranges", "bananas"]
shelf["beverages"] = ["water", "coffee", "tea"]
shelf.sync()

• Here, the sync function updates the data file so that it reflects the latest
changes to the shelf object data.

• When you want to retrieve the data, you would use the shelf object and
the appropriate key -- again, just as you would with a dictionary.
print ("Desserts:", shelf["desserts"])
print ("Fruit options:", shelf["fruits"])
print ("Drink options:", shelf["beverages"])

Shelving

• When you are finished with the file, be sure to close it:
shelf.close()

• close, like sync, will update the file. When you go back and use the
data file later, in the same or a different program, the data will be just
as you left it.

• If you want to practice with this method of data storage, try revisiting
some of our earlier examples using dictionaries and trying to re-
implement them using shelving.

• See if you can make it work – and have the data persist between
runnings of your program!

Exception Handling

• While a program is running, it may be presented with an error that
makes further execution impossible. As such, the program will crash.

• This particular scenario is called an exception. This is because the
error is an exceptional situation that the Python interpreter cannot
handle.

• When it happens, we say that the offending code "raises" an exception.

• Examples:

• Dividing by zero

• Attempting to concatenate a string to a number

• Attempting to convert a non-numeric string to a number

• An expression where the operator and data types are incompatible

Exception Handling

• In a compiled language, such as Java, some of these would not cause
exceptions because they would prevent the code from compiling in the
first place.

• Up until this point, in our programs, if an exception is raised, then the
program would simply crash. This is not something that you want to
happen in professionally-made software.

• However, another option we have is to handle them.

• "Handling" an exception means that, in the event of an error, we can
have the program respond to it and continue -- or, at least, quit
naturally-- instead of crashing.

Exception Handling

• This works in two parts:

1. We try to execute a series of statements.

2. If an exception arises, then we handle it with alternative code.

• We do this using a try statement with an except clause. This code
would take the following form:
try:

x = math.sqrt(-9.0)

except:

print ("We cannot use math.sqrt in this way!")

• The try component contains the code that we want to execute. This is
code that we know could potentially create an error during runtime.

Exception Handling

• If an error arises, we will "trap" or "catch" it -- where it is handled by
the next part...

• The except clause contains the code that we will execute in response,
if an error is raised while the try code is executing.

• If the try code completes without error, then the except code is
skipped entirely.

• Regardless, usual program execution will resume after one of these is
finished.

• In addition, your except clause can specify the kind of exception it is
intended to handle.

Exception Handling

• Here, we catch and handle a ValueError:
try:

x = math.sqrt(-9.0)
except ValueError:

print ("We cannot use math.sqrt in this way!")

• If your except clause is specific in this way, then other types of errors
-- by going uncaught -- could still cause a program crash here.
Example:
try:

x = int (input ("Please enter an integer: "))
result = 1 / x

except ValueError:
print ("Cannot convert that value to an int!")

Exception Handling

• If the user enters something that cannot be converted to a integer
value, then the except code will execute. However, if the user enters a
value of zero, then the program would still crash, because that is a
different kind of error, called a ZeroDivisionError

• (For some common exception types, see Table 7.6 on page 207.)

• There are some other variations on the "try-except" structure.

• For example, you can have multiple except clauses:
try:

x = int (input ("Please enter an integer: "))
result = 1 / x

except ValueError:
print ("Cannot convert that value to an int!")

except ZeroDivisionError:
print ("Cannot divide by zero!")

Exception Handling

• This way, either type of error will be caught and handled.

• Also, one except clause can handle more than one error type:
try:

x = int (input ("Please enter an integer: "))

result = 1 / x

except (ValueError, ZeroDivisionError):

print ("Oops! Either you entered a non-integer
value or tried to divide by zero!")

• There are some kinds of errors that you will want to handle differently,
and other kinds that you will want to handle in the same manner.

• Sometimes, in your except code, you may want to use the error
message in some way.

Exception Handling

• As a matter of fact, when an error arises, an exception object is
created, which you can assign to a variable to be used in the except
code:
try:

x = math.sqrt(-9.0)

except ValueError as exc:

print ("We cannot use math.sqrt in this way! ")

print ("Here is Python's error message: ")

print (exc)

• Finally, you can also add an else clause after the except clause. This
way, if the try code finishes executing completely and successfully,
then this code will execute.

Exception Handling

• Here, for example, we include an else clause...
try:

x = int (input ("Please enter an integer: "))

result = 1 / x

except (ValueError, ZeroDivisionError):

print ("Oops! Either you entered a non-integer
value or tried to divide by zero!")

else:

print ("You gave a valid input -- good job!")

• The else clause could be anything that we want to see happen, if and
when the try code successfully completes.

Exception Handling

• Exception handling is an important tool for preventing errors from
crashing your code.

• It is not the only way. Sometimes, you will want to simply write the
code so that the error cannot happen, in the first place.

• Other times, though, exception handling will be the way to go,
particularly in situations where:

• Something could go wrong -- but probably will not...

• ...and catching/handling the exception would be more efficient than trying to
prevent it

• Like many things, it is one of several options available to you.

