
1

Object-Oriented Programming

 Identifying classes and objects

 Types of class relationships

 A uses B

 A has-a B

 A is-a/is B

 Inheritance relationships

 Polymorphism

 Reading:

 Dawson, Chapter 9

 http://introcs.cs.princeton.edu/python/33design/

2

 A class represents a group (“class”) of objects with
the same attributes and behaviors

 Generally, classes representing objects should be

given names that are singular nouns

 Examples: Coin, Student, Message

 A class represents the concept (or "blueprint") of

such an object

 We are free to instantiate as many “instances” of
each object as needed

 Good selection of object names for the instances

can be helpful to understanding

Identifying Classes and Objects

3

Identifying Classes and Objects

 We want classes with the proper amount of
detail - neither too much nor too little

 For example, it may be unnecessary to create
separate classes for each type of appliance in a
house

 It may be sufficient to define a more general
Appliance class with appropriate instance

data

 It all depends on the details of the problem
being solved

4

Identifying Classes and Objects

 Part of identifying the classes we need is the
process of assigning responsibilities to each
class

 Every activity that a program must accomplish
must be represented by one or more methods
in one or more classes

 We generally use verbs for the names of
methods

 In early stages it is not necessary to determine
every method of every class – begin with
primary responsibilities and evolve the design

5

Class Relationships

• Classes in a software system can have various

types of relationships to each other

• Four of the most common relationships:

– Dependency: A uses B

– Aggregation: A has-a B (as in B is an integral part of A)

– Interface: A is B (adjective) or A is-a B (noun)

– Inheritance: A is-a B

• We will mainly focus on the first two and the last

• interface has different meanings...

6

Dependency

• A dependency exists when one class relies on

another in some way, usually by invoking the

methods of the other

• We've seen dependencies in previous

examples and in Projects 1 and 2

• We don't want numerous or complex

dependencies among classes

• Nor do we want complex classes that don't

depend on others

• A good design strikes the right balance

7

Dependency

• For example, a DicePlayer object uses two Die

objects – rolling them on each turn

• If we wrote software for a taxi service, we might

have classes for Driver and Taxi

• The relationship between the two would be one

of dependency. A Driver drives a Taxi

• Dependency indicates a relationship where one

type uses the other – but neither is considered

part of the other.

• We say that A "uses" B

8

Aggregation

• One of the benefits of object-oriented
programming is that we can define new types
composed of other types

• An aggregate is an object that is made up of
other objects

• Therefore aggregation is a has-a relationship

– A Car has a Transmission and has an Engine

– A StudentBody has several Student objects

– A CoffeeMaker has a Heater and a Container

• These parts can be basic built-in types, or other custom-
made types

9

Aggregation

• In code, an aggregate object contains references
to its component objects as instance data

• The aggregate object itself is defined in part by
the objects that make it up

• This is a special kind of dependency – the
aggregate usually relies for its existence on
the component objects

• As we saw with the Address problem in class, it
can be very useful to deal with the aggregate as
a self-contained unit, rather than trying to juggle
separate parts

Aggregation

• There are two ways to include the component

objects in an object that is an aggregation

– For one component (or a small constant number of

components), use parameters in the constructor

def __init__ (self, first_name, last_name,
street,...):

– For a large or indefinite number of components, you

can create an empty list, along with a function to add

items

def place_order (self, name, flavor, size):

...

10

UML – A Modeling Standard

• UML is a graphical tool to visualize and analyze

the requirements and do design of an object-

oriented solution to a problem

– Allows you to visualize the problem / solution

– Organizes your detailed information

• We have seen this before, implicitly.

• It's a complex topic, but we will examine one part:

class diagrams

11

12

Class Diagrams

• Classify the object types of the program

• Define name of each class

• Define each class’s members:
– Attributes (variables)

– Behaviors (functions)

• Show relationships between classes
– Dependency

– Aggregation

– Inheritance

13

Dependency/Aggregation in UML

StudentBody

- students : list

__str__(self) : str

Student

- first_name : str

- last_name : str

- home_address : Address

- school_address : Address

__str__(self) : str

- street_address : str

- city : str

- state : str

- zip_code : int

AddressDependency shown with this symbol

Aggregation shown with this symbol

14

Dependency/Aggregation in UML

+ roll(self)

DicePlayer

- other : DicePlayer

- name : str

- score : int

+ roll(self) : int

__str__(self)

- MAX : int

- face_value : int

Die

15

Dependency/Aggregation in UML

IceCreamParlor

- products : list

- employees : list

- tools : list

__str__(self) : str

Milkshake

- owner : str

- flavor : str

- size : str

(others)

Inheritance

• Inheritance allows a software developer to derive
a new class from an existing one

• The existing class is called the parent class,
superclass, or base class

• The new class is called the child class, subclass
or derived class

• As the name implies, the child inherits
characteristics of the parent – i.e., its attributes
and data

16

Inheritance

• Software reuse is a fundamental benefit of
inheritance

• As they say, "Don't reinvent the wheel". Take
advantage of what others have done well.

• A programmer can tailor a derived class as
needed:

adding new variables and functions

"overriding" some of the inherited methods

• An inheritance relationship specifies that:

A is a B

17

Inheritance

• Inheritance is based on an is-a relationship

• The child is a more specific version of the parent

• Inheritance relationships are shown in a UML class
diagram using a solid arrow from the child class to
the parent class

18

Vehicle

Car

Car is a more

specific type of

Vehicle

Deriving Subclasses

• In Python, we use the class header line to establish
an inheritance relationship

• Specifically, we place the parent class name in
parentheses after the class name.

• In the example below, we are creating a Car class
that is based on a more general Vehicle class

19

class Car (Vehicle):

class contents

Overriding Members

• Left alone, a child class will inherit all the public
functions of its parent class – as if you "copied and
pasted" the code into this one.

• However, a child class can redefine (or "override")
the definition of a public inherited function in favor
of its own, more class-appropriate, definition

• In Python, code is interpreted and executed at
runtime, so this is where types come into play.

• The class of the object determines which version of
the function is invoked at execution

• If you have a public variable in the parent class, and
then attempt to assign a variable of the same name
in the child class, it will overwrite the previous value.

20

The super Function

• In Python, constructors and other public functions are
inherited from the parent class.

• Yet we often want to use the parent's version of the
function inside the child's version

• The super function can be used to refer to the parent
and invoke the parent's version

def Child (Parent):

def __init__(self):

super().__init__() # a call to Parent()

plus whatever code we need for Child

21

The super Function

• The first line of a child’s constructor should use the
super reference to call the parent’s constructor

• The super reference can also be used to reference
(with a dot .) other variables and methods defined in
the parent’s class:
def my_function (self):

super().my_function() # a call to the

parent version

plus whatever code we need for child

class version

22

Class Hierarchies

• A child class of one parent can be the parent of
another child, forming a class hierarchy

• Two children of the same parent are called siblings

23

Business

KMart Macys

ServiceBusiness

Kinkos

RetailBusiness

Class Hierarchies

• A child class inherits from all its ancestor classes

• An inherited variable or function is passed
continually down the line (unless it is declared
private)

• Common features should be put as high in the
hierarchy as is reasonable

• There is no single class hierarchy that is
appropriate for all situations

24

Interface

• Here, we get into the notion of an interface

• In some languages, such as Java, there will be a
formal structure called an interface

• (In fact, in Java, "interface" is a reserved word!)

• At the very least, though, the term refers to the
idea that there are certain operations and
messages you can apply to something

• For example, you can:
Perform arithmetic with numbers

Access element and slices of sequences

Fetch values from dictionaries using keys

25

Interface
• Sometimes, completely different types may share a

similar interface

• For example, the + operator can be applied to both
numbers and strings

• For sequences and dictionaries, you can also use
the same syntax for getting elements:

variable[index_or_key]

• In Project 2, you may notice that the different shape
classes share in common an area function, so you
can call .area() for any of them!

• This makes it possible to loop through a sequence of
different shape objects without having to change the
code for any of those types.

• These are examples of polymorphism.

26

27

Polymorphism

• The term polymorphism literally means
"having many forms"

• Polymorphism is in effect when we can
treat different types in a similar manner

• Many operations and function calls in
Python are potentially polymorphic

• You can apply similar actions towards very
different types, such as adding numbers vs.
concatenating strings.

28

Designing for Inheritance

• As we've discussed, taking the time to create a

good software design reaps long-term benefits

• Inheritance issues are an important part of an

object-oriented design

• Properly designed inheritance relationships can

contribute greatly to the elegance,

maintainability, and reuse of the software

• Let's summarize some of the issues regarding

inheritance that relate to a good software design

29

Inheritance Design Issues

• Every derivation should be an is-a relationship

• Think about a potential future class hierarchy

• Design classes to be reusable and flexible

• Find common characteristics of classes and

push them as high in the class hierarchy as

appropriate, i.e. “generalize” the behavior
• Override methods as appropriate to tailor or

change the functionality of a child

• Add new variables to children, but only

redefine inherited variables if you mean it

30

Inheritance Design Issues

• Allow each class to manage its own data; use
the super reference to invoke the parent's
constructor to set up its data

• Even if there are no current uses for them,
override general methods such as __str__ and
__eq__ with appropriate definitions

• You can use super classes to represent general
concepts that lower classes have in common

• Use visibility modifiers carefully to provide
needed access without violating encapsulation

