Object-Oriented Programming

. Identifying classes and objects
. Types of class relationships
- Auses B
- Ahas-aB
- Als-a/is B
. Inheritance relationships
« Polymorphism
. Reading:
- Dawson, Chapter 9
- http://introcs.cs.princeton.edu/python/33design/

Identifying Classes and Objects

« A class represents a group (“class”) of objects with
the same attributes and behaviors

« Generally, classes representing objects should be
given names that are singular nouns

« Examples: Coin, Student, Message

o A class represents the concept (or "blueprint”) of
such an object

. We are free to instantiate as many “instances” of
each object as needed

« Good selection of object names for the instances
can be helpful to understanding

Identifying Classes and Objects

« We want classes with the proper amount of
detalil - neither too much nor too little

« For example, it may be unnecessary to create
separate classes for each type of appliance in a
house

. It may be sufficient to define a more general
Appliance class with appropriate instance

data

. It all depends on the details of the problem
being solved

Identifying Classes and Objects

. Part of identifying the classes we need is the
process of assigning responsibilities to each
class

 Every activity that a program must accomplish
must be represented by one or more methods
INn one or more classes

« We generally use verbs for the names of
methods

o In early stages it is not necessary to determine
every method of every class — begin with
responsibilities and evolve the design

Class Relationships

Classes in a software system can have various
types of relationships to each other

Four of the most common relationships:

— Dependency: A uses B

— Aggregation: A has-a B (as in B is an integral part of A)
— Interface: A is B (adjective) or A is-a B (noun)

— Inheritance: A is-a B

We will mainly focus on the first two and the last

Interface has different meanings...

Dependency

A dependency exists when one class relies on
another in some way, usually by invoking the
methods of the other

We've seen dependencies in previous
examples and in Projects 1 and 2

We don't want numerous or complex
dependencies among classes

Nor do we want complex classes that don't
depend on others

A good design strikes the right balance

Dependency

For example, a DicePlayer object uses two Die
objects — rolling them on each turn

If we wrote software for a taxi service, we might
have classes for Driver and Taxi

The relationship between the two would be one
of dependency. A Driver drives a Taxi

Dependency indicates a relationship where one
type uses the other — but neither is considered
part of the other.

We say that A "uses" B

Aggregation

One of the benefits of object-oriented
programming is that we can define new types
composed of other types

An aggregate is an object that is made up of
other objects

Therefore aggregation is a has-a relationship
— ACar has a Transmission and has an Engine
— A StudentBody has several Student objects

— ACoffeeMaker has a Heater and a Container

These parts can be basic built-in types, or other custom-
made types

Aggregation

In code, an aggregate object contains references
to its component objects as instance data

The aggregate object itself is defined in part by
the objects that make it up

This is a special kind of dependency — the
aggregate usually relies for its existence on
the component objects

As we saw with the Address problem in class, it
can be very useful to deal with the aggregate as

a self-contained unit, rather than trying to juggle

separate parts

Aggregation

* There are two ways to include the component
objects in an object that is an aggregation

— For one component (or a small constant number of
components), use parameters in the constructor

def init (self, first name, last name,
street,...):

— For a large or indefinite number of components, you
can create an empty list, along with a function to add
items

def place order (self, name, flavor, size):

10

UML - A Modeling Standard

« UML is a graphical tool to visualize and analyze
the requirements and do design of an object-

oriented solution to a problem

— Allows you to visualize the problem / solution

— Organizes your detailed information

* We have seen this before, imp

* It's a complex topic, but we wil
class diagrams

icitly.

examine one part:

11

Class Diagrams

Classify the object types of the program
Define name of each class

Define each class’'s members:

— Attributes (variables)

— Behaviors (functions)

Show relationships between classes
— Dependency

— Aggregation

— Inheritance

12

Dependency/Aggregation in UML

StudentBody

Student

- students : list

: !
4
4
4

Aggregation shown with this symbol

Dependency shown with this symbol

- first_name : str

- last_name : str

- home_address : Address
- school_address : Address

__str__(self) : str

v

|
\ %

Address

- street_address : str
- city : str

- state : str

- Zip_code : int

__str__(self) : str

13

DicePlayer

- other : DicePlayer
- hame : str
- score : int

+ roll(self)

|

|

|
\ %

Die

- MAX: int
- face_value : int

+ roll(self) : int
__str__(self)

Dependency/Aggregation in UML

14

Dependency/Aqggregation in UML

IlceCreamParlor

Milkshake

- products : list
- employees : list
- tools : list

T T

(others)

- owner : str
- flavor : str
- size : str

__str__(self) : str

15

Inheritance

Inheritance allows a software developer to derive
a new class from an existing one

The existing class is called the parent class,
superclass, or base class

The new class is called the child class, subclass
or derived class

As the name implies, the child inherits
characteristics of the parent — i.e., its attributes
and data

Inheritance

Software reuse is a fundamental benefit of
Inheritance

As they say, "Don't reinvent the wheel". Take
advantage of what others have done well.

A programmer can tailor a derived class as
needed:
»adding new variables and functions
»>"overriding" some of the inherited methods
An inheritance relationship specifies that:

AisaB

Inheritance

* Inheritance is based on an is-a relationship
* The child /s a more specific version of the parent

* Inheritance relationships are shown in a UML class
diagram using a solid arrow from the child class to
the parent class

Vehicle
A Car is a more
T — specific type of

Vehicle

Car

Deriving Subclasses

* |In Python, we use the class header line to establish
an inheritance relationship

« Specifically, we place the parent class name in
parentheses after the class name.

 In the example below, we are creating a Car class
that is based on a more general Vehicle class

class Car (Vehicle):
class contents

Overriding Members

Left alone, a child class will inherit all the public
functions of its parent class — as if you "copied and
pasted" the code into this one.

However, a child class can redefine (or "override")
the definition of a public inherited function in favor
of its own, more class-appropriate, definition

In Python, code is interpreted and executed at
runtime, so this is where types come into play.

The class of the object determines which version of
the function is invoked at execution

If you have a public variable in the parent class, and
then attempt to assign a variable of the same name
in the child class, it will overwrite the previous value.

The super Function

* |n Python, constructors and other public functions are
inherited from the parent class.

* Yet we often want to use the parent's version of the
function inside the child's version

* The super function can be used to refer to the parent
and invoke the parent's version

def Child (Parent):

def init (self):

super (). init () # a call to Parent()
plus whatever code we need for Child

The super Function

* The first line of a child’s constructor should use the
super reference to call the parent’s constructor

* The super reference can also be used to reference
(with a dot .) other variables and methods defined in
the parent’s class:

def my function (self):
super () .my function() # a call to the
parent version
plus whatever code we need for child
class version

Class Hierarchies

* A child class of one parent can be the parent of
another child, forming a class hierarchy

* Two children of the same parent are called siblings

Business

AN

RetailBusiness ServiceBusiness

AN AN

KMart Macys Kinkos

Class Hierarchies

A child class inherits from all its ancestor classes

An inherited variable or function is passed
continually down the line (unless it is declared
private)

Common features should be put_as high in the
hierarchy as is reasonable

There is no single class hierarchy that is
appropriate for all situations

Interface

Here, we get into the notion of an interface

In some languages, such as Java, there will be a
formal structure called an interface

(In fact, in Java, "interface" is a reserved word!)

At the very least, though, the term refers to the
idea that there are certain gperations and
messages you can apply to something

For example, you can:
» Perform arithmetic with numbers
> Access element and slices of sequences
» Fetch values from dictionaries using keys

Interface

Sometimes, completely different types may share a
similar interface

For example, the + operator can be applied to both
numbers and strings

For sequences and dictionaries, you can also use
the same syntax for getting elements:

variable[index or key]

In Project 2, you may notice that the different shape
classes share in common an area function, so you
can call .area() for any of them!

This makes it possible to loop through a sequence of
different shape objects without having to change the
code for any of those types.

These are examples of polymorphism.

Polymorphism

The term polymorphism literally means
"having many forms"

Polymorphism is in effect when we can
treat different types in a similar manner

Many operations and function calls In
Python are potentially polymorphic

You can apply similar actions towards very
different types, such as adding numbers vs.
concatenating strings.

27

Designing for Inheritance

As we've discussed, taking the time to create a
good software design reaps long-term benefits

Inheritance issues are an important part of an
object-oriented design

Properly designed inheritance relationships can
contribute greatly to the elegance,
maintainability, and reuse of the software

Let's summarize some of the issues regarding
inheritance that relate to a good software design

28

Inheritance Design Issues

Every derivation should be an is-a relationship
Think about a potential future class hierarchy
Design classes to be reusable and flexible

Find common characteristics of classes and
push them as high in the class hierarchy as
appropriate, i.e. “generalize” the behavior

Override methods as appropriate to tailor or
change the functionality of a child

Add new variables to children, but only
redefine inherited variables if you mean it

29

Inheritance Design Issues

Allow each class to manage its own data; use
the super reference to invoke the parent's

constructor to set up its data

Even if there are no current uses for them,
override general methods suchas __ str and
eq Wwith appropriate definitions

You can use super classes to represent general
concepts that lower classes have in common

Use visibility modifiers carefully to provide
needed access without violating encapsulation

30

