Sorting and Searching

« Sorting

o Simple: Selection Sort and Insertion Sort

o Efficient: Quick Sort and Merge Sort

« Searching
o Linear

0 Binary

* Reading for this lecture:
http://introcs.cs.princeton.edu/python/42sort/

Sorting

Sorting is the process of arranging a list of items in a
particular order

The sorting process is based on specific value(s)
— Sorting a list of test scores in ascending numeric order

— Sorting a list of people alphabetically by last name

There are many algorithms, which vary in efficiency, for
sorting a list of items

We will examine four specific algorithms:
Selection Sort Quicksort

Insertion Sort Merge Sort

Selection Sort

» The approach of Selection Sort:
— Select a value and put it in its final place in the list
— Repeat for all other values

* In more detail:
— Find the smallest value in the list
— Switch it with the value in the first position
— Find the next smallest value in the list
— Switch it with the value in the second position
— Repeat until all values are in their proper places

Selection Sort

* An example:

original: 3 9 6 1 2
smallest 1s 1: 1 9 6 3 2
smallest 1s 2: 1 2 6 3 9
smallest 1s 3: 1 2 3 6 9
smallest 1s 6: 1 2 3 o 9

« Each time, the smallest remaining value is found
and exchanged with the element in the "next"
position to be filled

Selection Sort
* Algorithm:

def selection sort (in list):
for index in range(len(in 1list)-1):

min = index

for scan in range(len(in_list)):
if in list[scan] < in list[min]:

min = scan

temp = in list[min]
in list[min] = in list[index]

in list[index] = temp

Swapping Two Values

* The processing of the selection sort algorithm
iIncludes the swapping of two values

« Swapping requires three assignment statements
and a temporary storage location of the same
type as the data being swapped:

first = 35

second = 53

temp = first

first = second # 53 now

second = temp # 35 now

Polymorphism in Sorting

Recall that a class can have comparison functions
that establish the relative order of its objects

We can use polymorphism to develop a generic
sort for any list of comparable objects

The list can sort itself using its sort function

That way, one method can be used to sort a group
of Person objects, Book objects, or whatever --
as long as the class implements the appropriate
comparison functions for that type

Polymorphism in Sorting

* The sorting method doesn't "care” what type of
object it is sorting, it just needs to be able to
compare it to other objects in the list

» That is guaranteed by putting in the appropriate
comparison functions so that the sorting method
can compare the individual objects to one
another — where they are mutually comparable

« We can define these functions for a class in
order to determine what it means for one object
of that class to be “less than another” — or "equal
to", "greater than", etc.

Insertion Sort

* The approach of Insertion Sort:

— Pick any item and insert it into its proper place in a
sorted sublist

— Repeat until all items have been inserted

 In more detail:
— Consider the first item to be a sorted sublist (of one item)

— Insert the second item into the sublist, shifting the first
item as needed to make room to insert the new addition

— Insert the third item into the sublist (of two items),
shifting items as necessary

— Repeat until all values are in their proper positions

Insertion Sort

* An example:
original:
insert 9:
insert 6

insert 1:

2

insert

Rk |Ww]w|w

10

Insertion Sort
* Algorithm:

def insertion sort (in list):
for index in range(l, len(in list)):

key = in list[index]

position = index

Shift larger values to the right
while position > 0 and key < in list[position-1]:
in list[position] = in list[position-1]

position -=1

in list[position] = key

11

Comparing Sorts

The Selection and Insertion sort algorithms are
similar in efficiency

They both have outer loops that scan all
elements, and /nner loops that compare the
value of the outer loop with almost all values In
the list

Approximately n? number of comparisons are
made to sort a list of size n

We therefore say that these sorts are of order n?
Other sorts are more efficient: order n log, n

12

Quicksort

« The approach of Quicksort:
— Reorganize the list into two partitions
— Recursively call Quicksort on each partition

 In more detail:
— Choose a "pivot" value from somewhere in the list

— Move values in the list so all elements smaller than the
pivot come before it, and all elements larger than the
pivot come after it

— Make recursive calls to Quicksort for the both partitions
— Keep doing this so long as partitions are of length > 1

13

Quicksort

* Main algorithm:
def quicksort (in_1list, start, end):

if start < end:
partition the list around a pivot

p = partition (in_list, start, end)

sort the items less than the pivot

quicksort (in list, start, p-1)

sort the items greater than the pivot

quicksort (in list, p+l, end)

14

Quicksort

def partition (in_1list, start, end):

pivot = in list[end]

i = start

for j in range (start, end):

if in list[]j] <= pivot:

temp = in list[i]
in list[i] = in 1list[]]
in list[]j] = temp
i+=1

temp = in list[i]

in list[end]

in list[end] = temp

in list[i]

return i

15

Merge Sort

* The approach of Merge Sort:
— Divide the list into two halves
— Sort each half, and then merge the two back together

 In more detail:
— So long as the input list has more than one item...
— Divide the list into (roughly) equal halves
— Call Merge Sort recursively on each half

— Merge the two (sorted) halves into a single sorted
list of items

— Alist of length 1 is considered "sorted" so it is returned

with no need for further recursive calls.
16

Merge Sort
* Algorithm:

def merge sort (in 1list):
Trivial : it is considered "sorted"
if len(in list) <= 1:

return in_list

Sort each half of the list
first half = merge sort (in list[:len(in 1list)//2])

second half = merge sort (in list[len(in list)//2:])

Merge the two sorted halves
return merge (first half, second half)

17

Merge Sort

def merge (first, second):

result = []

while first and second:
i1f first[0] < second[O0]:
result.append(first.pop(0))
else:

result.append (second.pop (0))

return result + max(first, second)

18

Comparing Sorts

The Quicksort and Merge Sort algorithms are
similar in efficiency

They both divide the list into two components
and then recursively call themselves on each
component.

In the best case, approximately n log, n number
of comparisons are made to sort a list of size n

Therefore, we say these sorts are order n log, n

Although there are exception, these sorts are
considered much more efficient than order n?

19

Searching

Searching is the process of finding a target
element within a group of items called the
search pool

The target may or may not be in the search pool

We want to perform the search efficiently,
minimizing the number of comparisons

Let's look at two classic searching approaches:
linear search and binary search

As we did with sorting, we'll implement the
searches with polymorphic comparability

20

Linear Search

A linear search begins at one end of a list
and examines each element in turn

Eventually, either the item is found or the
end of the list is encountered

See the 1linear search method in
search _code.py

At worst, you may examine every single
item in the list!

21

Linear Search

* Algorithm:

def linear search (in list, target):
for item 1in in list:
if item == target:
return item

return None

22

Binary Search

A binary search assumes the list of items in the
search pool is sorted

It eliminates a large part of the search pool with a
single comparison

A binary search first examines the middle element
-- If It matches the target, the search is over

If it doesn't, only half of the remaining elements
need be searched

Since they are sorted, the target can only be in
one half of the other

23

Binary Search

The process continues by recursively searching
one — and only one — half of the list

Each comparison eliminates approximately half
of the remaining data

Eventually, the target is found or there are no
remaining viable candidates (and the target has
not been found)

At most, there will be log, n recursive calls

See the binary search method in
search _code.py

24

Binary Search

» Algorithm:

def binary search (in_list, target):
if len (in list) < 1:
return None

else:
mid = len(in list) // 2
if in list[mid] == target:

return in list[mid]
elif in list[mid] > target:
return binary search(in list[:mid], target)

else:
return binary search(in list[mid:], target)

25

Binary Versus Linear Search

» The efficiency of binary search is good for
the retrieval of data from a sorted group

* However, the group must be sorted initially,
and as items are added to the group, it
must be kept in sorted order

* The repeated sorting creates inefficiency

* |f you add data to a group much more often
than you search it, it may actually be worse
to use binary searches rather than linear

26

