
1

Data Structures and Abstract
Data Types

• Abstract Data Types

 Stack

 Dictionary

• Data structures

 Array

 Linked List

 Tree

• Interface vs. Implementation

2

Abstract vs. Concrete

• In any type of programming, we can look at the

code on at least two levels

 Abstract

 Concrete

• "Abstract" will have to do with the general logic of

the code – i.e., the operations/steps that we

perform on program data

• "Concrete", then, will concern specific details

concerning the particular programming language

and its constructs

3

Abstract vs. Concrete

• Another way to think of this could be the

difference between pseudocode and actual code

• Abstract program logic can take concrete form in

many different programming languages

• For example, a merge sort generally entails the

following logic:

 Divide the sequence in half

 Perform a merge sort on each half

 Merge those two sorted halves back into one

sorted sequence

Merge sort: Visual

Source: http://howtodoinjava.com/wp-content/uploads/2015/10/Merge_sort_algorithm.png

5

Abstract vs. Concrete

• Depending on the specific programming

language, that logic will take on a certain concrete

form

• In sort_code.py, you can see a Python-based

merge sort function

• One notable feature is that Python allows you to
define functions (such as merge) inside of other

functions.

• In contrast, here is a Java-based merge sort...

mergeSort function in Java

Source: http://javahungry.blogspot.com/2013/06/java-sorting-program-code-merge-sort.html

merge function in Java

Source: http://javahungry.blogspot.com/2013/06/java-sorting-program-code-merge-sort.html

8

Abstract Data Types

• Furthermore, as with many algorithms, there are

variations on merge sort, such that some are

more or less efficient – in terms of time or space –
than others

• We can also think of certain data types as being

abstract. This means that the type has a unique

logic that can be defined in general terms.

• We will look at two:

 Stacks

 Dictionaries

9

Stacks

• A stack is a way of organizing data, defined by

the logic of "last in, first out" or LIFO

• This means that the only element in a stack that

you can access is the last one you added, or

"pushed". For example...

push 2 push 3 push 7

2 2

3

2

3

7

10

Stacks

• You can think of it as similar to placing items onto

a stack, such as eating trays

• When you remove something, we say that you

"pop" it from the stack. For example...

pop 7 pop 3 pop 2

2

2

3

2

3

7

(empty)

11

Dictionaries

• You are already familiar with the logic of a

dictionary, by this point.

• Basically, you add data entry in the form of key-

value pairs, and you can later access or modify

those entries by key

• For example...

add "name", "Joe"

add "age", 22
"age"

"name"

22

"Joe"

"name" "Joe"

12

Abstract Data Types

• These and others represent ways of

conceptualizing data relationships on an abstract,

logical level.

• Many programming languages have stacks,

dictionaries, queues, lists, and other such forms

• These abstract data types are defined by their

operations

 Stacks: Push and pop

 Dictionaries: Adding key-value entries and fetching

values by key

13

Concrete Data Structures

• However, this abstract logic can be achieved in a

number of ways, which will depend upon various

concrete data structures available in a particular

programming language.

• These are the specific language- and machine-

dependent modes of storing and accessing data

• We will look at three:

 Array

 Linked List

 Tree

14

Arrays

• An array is characterized by a sequence data

elements accessible via an index, or position

number.

• In Python, this has been in the form of tuples and

lists – the main difference being that tuples are

immutable while lists are mutable.

my_list = ["hello", "goodbye", "yes", "no"]

print (my_list[1])

• You will see similar concrete data structure in

many programming languages

15

Linked Lists

• A linked list is made up of nodes – where each

node, starting with the head, points to the next

node.

• The end node, of course, does not point to any

next node.

• Each node is a container for a value

"Joe" "Hello World" True 473

16

Trees

• A tree is also made up of nodes – where each

node, starting with the root, points to zero or more

child nodes

• Nodes that have no child nodes are called leaves.

• Each node is a container for a value

"Joe"

"Hello World"

True

473

17

Interface vs. Implementation

• The different abstract data types will have certain

operations that you can perform on them:

 Stack: Push and Pop

 Dictionary: Add Entry, Fetch Value by Key

• These operations, then, can be considered the

interface for their respective types

• The implementation, then, will consist of the

underlying concrete data structure, as well as the

code to implement the abstract operations.

