Data Structures and Abstract
Data Types

« Abstract Data Types
»> Stack
» Dictionary

« Data structures
» Array

» Linked List
> Tree

* Interface vs. Implementation

Abstract vs. Concrete

* |In any type of programming, we can look at the
code on at least two levels
» Abstract
» Concrete

« "Abstract” will have to do with the general logic of
the code - i.e., the operations/steps that we
perform on program data

« "Concrete", then, will concern specific details
concerning the particular programming language
and its constructs

Abstract vs. Concrete

« Another way to think of this could be the
difference between pseudocode and actual code

« Abstract program logic can take concrete form in
many different programming languages

* For example, a merge sort generally entails the
following logic:

» Divide the sequence in half
» Perform a merge sort on each half

» Merge those two sorted halves back into one
sorted sequence

3

Merge sort: Visual

38 (27143 |13|19(82|10

38 27|43 |3 918210
38|27 4313 9|82 10
v N \

38 27 43 3 9 82 10

/
"
N

27|38 3143 918 10
3127 |38|43 9|10 |82

319(10 (27|38 |43 |82

Source: http://howtodoinjava.com/wp-content/uploads/2015/10/Merge sort algorithm.png

Abstract vs. Concrete

Depending on the specific programming
language, that logic will take on a certain concrete
form

In sort_code.py, you can see a Python-based
merge sort function

One notable feature is that Python allows you to
define functions (such as merge) inside of other

functions.
In contrast, here is a Java-based merge sort...

mergeSort function in Java

public static int[] mergeSort(int [] list) {
if (list.length <=1) {
return list;

}

/[Split the array in half

int[] first = new int[list.length / 2];

int[] second = new int[list.length - first.length];
System.arraycopy(list, 0, first, 0, first.length);
System.arraycopy(list, first.length, second, 0, second.length);

// Sort each half
mergeSort(first);
mergeSort(second);

// Merge the halves together, overwriting the original array

merge(first, second, list);
return list;

Source: http://javahungry.blogspot.com/2013/06/java-sorting-program-code-merge-sort.html

merge function in Java

private static void merge(int[] first, int[] second, int [] result) {
I/l Merge both halves into the result array
/I Next element to consider in the first array
int iFirst = 0;
/I Next element to consider in the second array
int iSecond = 0;

// Next open position in the result
intj=0;
/I As long as neither iFirst nor iSecond is past the end, move the
// smaller element into the result.
while (iFirst < first.length && iSecond < second.length) {
if (first[iFirst] < second[iSecond]) {
result[j] = first[iFirst];
IFirst++;
} else {
result[j] = second[iSecond];
iSecond++;

}
j*
}
// copy what's left
System.arraycopy(first, iFirst, result, j, first.length - iFirst);
System.arraycopy(second, iSecond, result, j, second.length - iSecond);

Source: http://javahungry.blogspot.com/2013/06/java-sorting-program-code-merge-sort.html

Abstract Data Types

* Furthermore, as with many algorithms, there are
variations on merge sort, such that some are
more or less efficient — in terms of time or space —

than others

* We can also think of certain data types as being
abstract. This means that the type has a unique
logic that can be defined in general terms.

« We will look at two:

» Stacks
» Dictionaries

Stacks

« A stack is a way of organizing data, defined by
the logic of "last in, first out" or LIFO

* This means that the only element in a stack that
you can access is the last one you added, or
"pushed". For example...

push 2 push 3 push 7
R 7
3 3

2 2 2

Stacks

* You can think of it as similar to placing items onto
a stack, such as eating trays

 When you remove something, we say that you
"pop" it from the stack. For example...

pop 7 pop 3 pop 2
7 3 2
— 3 B
2 2

(empty) 10

Dictionaries

* You are already familiar with the logic of a
dictionary, by this point.

« Basically, you add data entry in the form of key-
value pairs, and you can later access or modify
those entries by key

* For example...
add "name", "Joe" "name"” "Joe"

add l'ageUU, 22 name Joe
llagell 22

11

Abstract Data Types

« These and others represent ways of
conceptualizing data relationships on an abstract,
logical level.

« Many programming languages have stacks,
dictionaries, queues, lists, and other such forms

* These abstract data types are defined by their
operations
» Stacks: Push and pop

» Dictionaries: Adding key-value entries and fetching
values by key

12

Concrete Data Structures

« However, this abstract logic can be achieved in a
number of ways, which will depend upon various
concrete data structures available in a particular
programming language.

* These are the specific language- and machine-
dependent modes of storing and accessing data

« We will look at three:
> Array
» Linked List
> Tree

13

Arrays

« An array is characterized by a sequence data
elements accessible via an index, or position
number.

 |In Python, this has been in the form of tuples and
lists — the main difference being that tuples are
iImmutable while lists are mutable.

my list = ["hello", "goodbye", "yes", "no"]

print (my list[1])

* You will see similar concrete data structure in
many programming languages

14

Linked Lists

» Alinked list is made up of nodes — where each

node, starting with the head, points to the next
node.

* The end node, of course, does not point to any
next node.

« Each node is a container for a value

"Joe" —{"Hello World" | True — 473

15

Trees

* Atree is also made up of nodes — where each

node, starting with the root, points to zero or more
child nodes

* Nodes that have no child nodes are called leaves.
« Each node is a container for a value

"Hello World"
_~ N
"Joe” True

N

473 | .

Interface vs. Implementation

* The different abstract data types will have certain
operations that you can perform on them:

» Stack: Push and Pop
= Dictionary: Add Entry, Fetch Value by Key

* These operations, then, can be considered the
interface for their respective types

* The implementation, then, will consist of the
underlying concrete data structure, as well as the
code to implement the abstract operations.

17

