
IT Security Principles:

Linux Exploitation

IT 444 – Network Security



Stack Operation

• The concept of a stack in computer science can best be 

explained by comparing it to a stack of lunch trays in a 

school cafeteria

• The process of putting items on the stack is called a push 

• Taking an item from the stack is called a pop (pop 

command in assembly language code)

• Every program that runs has its own stack in memory

• The stack grows backward from the highest memory 

address to the lowest. (bottom -> top)



Stack Operation
• Two important registers deal with the stack: 

o Extended Base Pointer (EBP) 

o Extended Stack Pointer (ESP)

• EBP register is the base of the current stack frame of a 

process (higher address). 

• ESP register always points to the top of the stack (i.e., 

lower address).



Stack Operation

• When a function is called in assembly code, three things 

take place:
o The calling program sets up the function call by first placing the 

function parameters on the stack in reverse order.

o The Extended Instruction Pointer (EIP) is saved on the stack so the 

program can continue where it left off when the function returns (the 

return address).

o The call command is executed, and the address of the function is 

placed in the EIP to execute



Stack Operation

• The called function’s responsibilities are...

o First, to save the calling program’s EBP register on the stack, 

o Next, to save the current ESP register to the EBP register (setting the 

current stack frame)

o Then, to decrement the ESP register to make room for the function’s 

local variables. 

o Finally, the function gets an opportunity to execute its statements. 

o The last thing a called function does before returning to the calling 

program is to clean up the stack by incrementing ESP to EBP -- clearing 

the stack as part of the leave statement



Buffer Overflows

• Buffers are used to 

store data in 

memory

• Buffers cannot
prevent you from 

putting too much 

data into the 

reserved space



Ramifications of Buffer Overflows

• In a buffer overflow, three things can happen:

1. Denial of service: Easy to get a segmentation fault when 

dealing with process memory

2. EIP can be controlled to execute malicious code at the user 

level of access. This happens when the vulnerable program 

is running at the user level of privilege

3. EIP can be controlled to execute malicious code at the 

system or root level



Local Buffer Overflow Exploits

• Local exploits are easier because you have access to the 

system memory space and debug exploits easier.

• The basic goal of buffer overflow exploits is to overflow a 

vulnerable buffer and change the EIP for malicious 

purposes.

o the EIP points to the next instruction to be executed. An attacker 

could use this to point to malicious code

o A copy of the EIP is saved on the stack to continue with the 

command after the call when the function completes

o Influencing the saved EIP value, when the function returns, the 

corrupted value of the EIP will be popped off the stack into the 

register (EIP) and then executed.



Local Buffer Overflow

• In assembly, NOP means to do nothing but move to the 

next command

• When placed at the front of an exploit buffer, this padding 

is called a "NOP sled".

• If the EIP is pointed to a NOP sled, the processor will ride 

the sled right into the next component

• On x86 systems, the 0x90 opcode represents NOP.

• The most important element of the exploit is the return 

address, which must be aligned perfectly and repeated until 

it overflows the saved EIP value on the stack



Exploit development

• The exploit development process generally 

follows these steps:

1. Control the EIP.

2. Determine the offset(s).

3. Determine the attack vector.

4. Build the exploit.

5. Test the exploit.

6. Debug the exploit, if needed.



Format String Exploits

• Format string exploits became public in late 2000, they are 

still common in applications today

• Many organizations still don’t utilize code analysis or binary 

analysis tools on software before releasing it

• Format strings are used by various print functions

o When someone calls one of these functions, the format string 

dictates how and where the data is compiled into the final string

o If the creator of the application allows data specified by the end 

user to be used directly in one of these format strings, the user 

can change the behavior of the application. 



Format String Exploits

o If the programmer is sloppy and does not supply the correct 

number of arguments, or if the user is allowed to present 

their own format string, the function will happily move down 

the stack (higher in memory), grabbing the next value to 

satisfy the format string requirements) – including disclosing 

as memory locations, data variables, and stack memory



Memory Protection Schemes

• Since buffer overflows and heap overflows have come to be, many 
programmers have developed memory protection schemes to 
prevent these attacks

• Libsafe is a dynamic library that allows for the safer implementation 
of the following dangerous functions:

o strcpy(), strcat(), sprintf() and vsprintf()

o getwd(), gets(), realpath(), fscanf(), scanf(), and sscanf()

• Libsafe overwrites these dangerous libc functions by replacing the 
bounds and input-scrubbing implementations, thereby eliminating 
most stack-based attacks



Memory Protection Scheme

• StackShield, StackGuard, and Stack Smashing Protection (SSP)

o A replacement to the gcc compiler that catches unsafe operations at compile 

time

o When a function is called, StackShield copies the saved return address to a 

safe location and restores the return address upon returning from the 

function

• StackGuard: If a buffer overflow attempts to overwrite the saved EIP, the 

canary will be damaged and a violation will be detected

• Stack Smashing Protection (SSP): rearranging the stack variables to make 

them more difficult to exploit



Memory Protection Scheme


