CS 438/697 Applied Machine Learning

Midterm Examination Review

Spring 2015

Wei Ding

Schedule

The examination is close-book and close-note. However, you can prepare a cheat sheet using ONE piece of paper (size 8.50" * 11.00", double side, no less than 11-font size and single line space).

There are **65 minutes** for the Examination.

Class Time	Exam Time
4:00 PM	4:05 PM – 5:10 PM Thursday March 12
Must be at class room at	Assume it takes 5 minutes to distribute the
4:00 PM sharp	examination papers

Preparation Materials

Lecture notes, in-classes exercise, Textbook, homework assignments.

Topics

- 1. Everything you have practiced in homework
- 2. All the questions we have practiced in the class
- 3. Introduction to Applied Machine Learning:
 - what is machine learning
 - the idea behind machine learning
 - explain machine learning using a real-world example
 - what is supervised learning
 - what is unsupervised learning
 - how to use training data in supervised learning
 - difference between classification and regression
 - difference between machine learning and statistics
- 4. Introduction to Pattern Recognition Part I
 - What is pattern recognition
 - What is feature extraction
 - What is polynomial curve fitting
 - How to define an error function in polynomial curve fitting

- What is the gradient descent algorithm; must understand its formal definition.
- What is the learning rate
- Understand why we use partial derivative in the gradient descent algorithm
- Understand how to plot hypothesis h and cost function J
- Understand how to do linear algebra addition and multiplication
- 5. Introduction to Pattern Recognition Part II
 - Explain what is over-fitting
 - Understand the relationship between over-fitting and size of the data set
 - How regularization is used with the sum-of-squares error term
 - Must know how to calculate partial derivative for θ₀ and θ₁ when n=1 (only one feature).
- 6. Theano: GPU Computing and Automatic Differentation for Python:
 - What is Theano?
 - What is CUBLAS?
 - What is the Nearest Neighbor algorithm?
 - Understand how to write one matrix operation for distance calculation