AUTOMATIC DETECTION OF SUB
KILOMETER CRATERS IN HIGH
RESOLUTION PLANETARY IMAGES.

.-. .‘

SIYI LIU
CHRIS STILLMAN
KARTIK PANJABI



INTRODUCTION

T j » Formed by collision of meteoroids with
! planetary surfaces.

o features.

‘N . Initially this was studied visual
&3 inspection of images.

: =4 * All surveys are done manually at
i present.




INTRODUCTION

 Importance of Carter Study
— Determine, if life ever arose on Mars

— Determine the evolution of the surface and interior
of Mars

— Prepare for human exploration



FACTS

Technical details of method can be evaluated
with 12.5 m/pixel.

Detection percentage of method is ~70%.
System detects over 35K craters in this image.
Average crater density is 0.5 craters/sq. km

Daniel Barringer was first guy to identify the
Crater.



AUTOMATING THE PROCESS

Most comprehensive surveys catalogs of
craters in MARS contain information 42,283
and 57,633.

This craters are larger than 5km in diameter.
There exists craters sub-km craters.

So compiling this larger data manually is
laborious and impractical.



AUTOMATING THE PROCESS

 Automating surveys can deliver the regional or
global coverage.

e Earlier method were not developed beyond
the demonstration stage.

* This method did not demonstrated to be
robust to changes, hence limiting in actual
applications.



AlM OF PAPER

Present different approach to auto-detection
of craters in panchromatic planetary images.

CDA-Crater Detection Algorithm with
mathematical morphology.

Observation that a crater can be recognized in
an image as pair of crescent-like highlight and
shadow regions.

Focus is on surveys of sub-km craters.



CONTENTS OF PAPER

e Methods

— Describes the core crater identification

e Results

— Results of applying methods to very large images
or MARS

e Conclusion

— Conclusion and Future directions of Research.



METHODS

Preprocessing

Shape Filters

Matching Highlight and Shadow Regions
Supervised classification.
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PREPROCESSING

* Image of planetary surface contains many
highlights and shadows that’s not required.
Methods employed for it are as follows
— Background Removal
— Power Filter
— Area Filter



PREPROCESSING

 Background Removal
— Removes background features such as mountains.

— Median filter applied to images, this gives us the
global features of background.

— Subtracting this gives us image that has no large
background features.

— Test sites uses 201 pixels wide circular window.



PREPROCESSING

 Power Filters
— Removes the feature that are invisible.
— Implement as attribute filter with power attribute
P=A(h_-h,)?
— h, is gray level.
— h, is gray level of darkest neighboring feature.
* Area Filters

— Removes all the features that are too small for
crater detection.
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SHAPE FILTERS

Discriminate the crater-regions from non-crater regions.



SHAPE FILTERS

— shape filter uses pre-collected reference shapes to
identify matching shapes.

— 17 reference shapes for highlight regions
P EEEE R R

— 12 reference shapes for dark regions
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SHAPE FILTER

The attributes of highlight and shadow
regions: Hu’s seven moment invariants.

Euclidean Distance: <=0.05
Highlight regions and highlight references ;
Shadow regions and shadow references.
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MATCHING HIGHLIGHT AND SHADOW

REGIONS

nnhWN

Five rules to be considered as
a crater candidate:
1.

Distance <=1.65sqr(AH)
Size<=4

Elongation <=3
Elongation<individual
Angle
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SUPERVISED CLASSIFICATION

C4.5 decision tree
classification
algorithm

See side material for definition




EXPERIMENT—TEST SITE

Geographical and geologic
map of the test site. The
Large rectangle is the test
site. (8248*65448 pixels)

264 tiles

The small red rectangle is
the training tile.(1700*1700
pixels)




TRAINING SET

The red arrow indicates a 1 kilometer
size crater. A majority of the craters
within the tile are sub-km craters.

1543 crater candidates were indentified
'@ by the algorithm using shape filters, but
before applying a supervised

- classification.

IA Problem: It also detected many regions
23 that were not craters.




RESULT

Yellow: craters labeled by an expert.
(69)

Blue: crater candidates but are not
true craters (59)

Training set

1543 candidates.
185 of them as craters. (red ones)

The rest of them are non-craters.




TESTING THE AUTO
DETECTION ALGORITHM

- Performance tested using
training and testing tiles.

*On both sites craters were
marked for ground truth and
quality assessment.

*351 craters were use in the
Ground Truth data.

*360 craters in the test site.

*The proceeding slide shows
both craters marked using
the algorithm (red) and those
marked by a researcher
manually (yellow).

*Top is the training site,
Bottom is the test site.




PERFORMANCE TESTED USING
TRAINING AND TESTING TILES.

Limitations between the
two processes

*The algorithm outlined in
this paper was designed for
greater than 20 pixels
diameters and craters larger
than 200 meters.

*The manual method can
identify any feature visible
to the human eye, therefore
much finer in detail than the
algorithm.

*|s this a fair
comparison?




THE RESULTS

detection algorithm
Lo, Training
— Do to this indiscrepancy
sites (all)
only craters greater
than 200m in diameter .
provide the best T_ram'ng_ LLE £ e
comparison. Site (D>=
. - 200m)
— The following table list
all the data and just the
greater than200m Test site 198 36 162
data. (all)
e The Indicators et S 190 . -
TP- True Positive est _|te
FP- False Positive (D>=
FN- False Negative 200m)

Crater counts



THE RESULTS

+ Testing the auto --““
detection algorithm Training
— True Positives are the # sites (all)
of craters identified as S 109 3 45
true craters. Site (D>=
— False Positives are spots 200m)
identified as a crater
but were in fact not. Test site 198 36 162
— False Negatives are (all)
craters that were not T Ss 120 35 57
detected in the first (D>=
place. 200m)

Crater counts



THE RESULTS

The Grade:

e Disthe measure of crater
performance

e Bisthe delineation
performance

e Qisthe overall
measurement of the
performance of the
algorithm

e from comparing the
manual analysis to the
algorithm

Training  49.9% 48.5%
sites (all)

Training  70.8% 0.09 66.5%
Site
(D>=
200m)

Test site 55% 0.18 50%
(all)

Test Site  67.8% 0.29 56.6%
(D>=
200m)

Quality of crater detection



THE RESULTS

+ Testing the auto --““
detection algorithm Training
sites (all)
D= 100TP/(TP + FN)
Training 109 8 45
B= FP/TP Site (D>=
Q= 100TP/(TP+FP+FN | %™
Test site 198 36 162
(all)
Test Site 120 35 57
(D>=
200m)

Crater counts



THE RESULTS

e Clearly results from the

>=200m craters show a
higher outcome to
those of the complete
group.
— Overall crater detection
performance = ~70%

— Overall algorithm
performance= ~55-65%

Training  49.9% 0.0 48.5%
sites (all)

Training  70.8% 0.09 66.5%
Site
(D>=
200m)

Test site 55% 0.18 50%
(all)

Test Site  67.8% 0.29 56.6%
(D>=
200m)

Quality of crater detection



PERFORMANCE RESULTS

 The results compare favorably to those in earlier
studies of small craters near the Olympus Mons
region.

— eg; D=70% with a of Q= 62%



SURVEYING SUB-KM CRATERS
IN THE HRSC IMAGE

Crater Identification Algorithm

e 2611 tiles were selected for an expanded
training set.
— 1994 examples of characteristic crater shapes
— 617 examples of characteristic non-crater shapes

 To maximize time and effort this crater
identification algorithm is then put into a data
processing pipeline.



SURVEYING SUB-KM CRATERS
IN THE HRSC IMAGE

 The processing pipeline uses scripts to
automate the process

— The supervised classifier uses Java-based routines,
found in the WEKA environment

e The pipeline produces:
— A final catalog of craters

— A set of ArcGIS project files (each pertains to a
single tile)



SURVEYING SUB-KM CRATERS
IN THE HRSC IMAGE

* ArcGIS Project

— Tile info it contains:
e Tile image
e Crater candidates
e Detected craters

— ArcGIS uses:
e Produces accurate crater counting in small regions

e Produces a “carpet coverage” of sub-km craters in a
large region.

— While not as accurate as manual mapping it is much more
practical time wise and sufficient for statistical purposes



SURVEYING SUB-KM CRATERS

35,494 craters identified in the HRSC image

*Areas shown in red or darker colors are areas where crater density exceeds 0.8
craters/km?.



SIZE FREQUENCY
DISTRIBUTION OF CRATERS IN
THE HRSC IMAGE

- Craters indentified using the
auto-survey span.

*Observed fall off in
the number of craters
having diameters
smaller than ~200m
that the algorithm.

Green- counts using only
craters located outside the
crater enhanced area.

crater count / km 2

Red- counts using only
craters located within the
enhanced area

I % b 1 TR R T B SRR Y

256 512 1024 2048 4096
crater diameter (meters)

SFD of masked area craters



CONCLUSION

The whole image(h0909 0000, 8248*65448 pixels) took 14
hours to compute;

7 hours for tiling, preprocessing, and shape filters;
6.3 hours for supervised machine learning;
0.6 hours for removing doubles;

10710 pixels/second;
Accuracy about 70%



IMPROVEMENT???

The process of rejecting and/or retaining a shape could be based on machine
learning rather than compare and contrast to a limited group of chosen

shapes.
Clekir] # rj["‘ F3 I..J[,j [“r

f

:
NP EEEEEEER R O



IMPROVEMENTS

*Matching criteria could be reviewed and potentially replaced completely by a
decision function generated by a supervised classifier that uses a larger training
set.

*Other classification methods other than C4.5 method can be tested and may
offer improved performance. One such example would be the Support Vector
Machine
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