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Abstract—In this paper, we study a new problem of continuous learning from doubly-streaming data where both data volume and

feature space increase over time. We refer to the doubly-streaming data as trapezoidal data streams and the corresponding learning

problem as online learning from trapezoidal data streams. The problem is challenging because both data volume and data dimension

increase over time, and existing online learning [1], [2], online feature selection [3], and streaming feature selection algorithms [4], [5]

are inapplicable. We propose a new Online Learning with Streaming Features algorithm (OLSF for short) and its two variants, which

combine online learning [1], [2] and streaming feature selection [4], [5] to enable learning from trapezoidal data streams with infinite

training instances and features. When a new training instance carrying new features arrives, a classifier updates the existing features

by following the passive-aggressive update rule [2] and updates the new features by following the structural risk minimization principle.

Feature sparsity is then introduced by using the projected truncation technique. We derive performance bounds of the OLSF algorithm

and its variants. We also conduct experiments on real-world data sets to show the performance of the proposed algorithms.

Index Terms—Online learning, streaming features, sparsity, trapezoidal data streams

Ç

1 INTRODUCTION

RECENTLY we have witnessed an increasing number of
applications on doubly-streaming data where both data

volume and data dimensions increase with time. For exam-
ple, in graph node classification, both the number of graph
nodes and the node features (e.g., the ego-network structure
of a social network node) often change dynamically. In text
classification and clustering, such as the infinite vocabulary
topic model [6], both the number of documents and text vocab-
ulary increase over time to allow the addition, invention and
increased prominence of new terms to be captured. Fig. 1
gives an example of doubly-streaming text data where both
new documents and new text vocabulary arrive over time.

We refer to the above doubly-streaming data as trapezoi-
dal data streams where data dynamically change in both vol-
ume and feature dimension. The problem of learning from
trapezoidal data streams is much more difficult than exist-
ing data stream mining and online learning problems [7],
[8]. The main challenge of learning from trapezoidal data
streams is how to design highly dynamic classifiers that can
learn from increasing training data with an expanding fea-
ture space. Obviously, existing online learning [1], [9],
online feature selection [3] and streaming feature selection

algorithms [5] cannot be directly used to handle the prob-
lem because they are not designed to deal with the simulta-
neous change of data volume and data dimension.

Online learning algorithms [1] were proposed to solve
the problem where training instances arrive one by one but
the feature space is fixed and known a priori before learning.
The algorithms update classifiers using incoming instances
and allow the sum of training loss to be gradually bounded
[1]. To date, online learning algorithms, such as the Percep-
tron algorithm [10], the Passive Aggressive (PA) algorithm
[2] and the Confidence-Weighted (CW) algorithm [11], have
commonly been used in data-driven optimizations, but they
cannot be directly used to handle a dynamic feature space.

Online feature selection algorithms [1], [3] were pro-
posed to perform feature selection in data streams where
data arrive sequentially with a fixed feature space. Online
feature selectors are only allowed to maintain a small num-
ber of active features for learning [3]. These algorithms use
sparse strategies, such as feature truncation, to select repre-
sentative features. Sparse online learning via truncated gra-
dient [1] and the OFS algorithm [3] are typical algorithms.
However, these algorithms cannot solve the trapezoidal
data stream mining problem because they assume the fea-
ture space is fixed.

Online streaming feature selection (OSFS) algorithms [5]
were proposed to select features in a dynamic feature space
where features arrive continuously as streams. Each new
feature is processed upon its arrival and the goal is to select
a “best so far” set of features to train an efficient learning
model. It, in some ways, can be seen as the dual problem of
online learning [5]. Typical algorithms include the online
streaming feature selection algorithm [4] and the fast-OSFS
[5] algorithm. However, these algorithms consider only a
fixed training set in which the number of training instances
is given in advance before learning.

In this paper, we propose a new Online Learning with
Streaming Features (OLSF ) algorithm and its two variants
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OLSF -I and OLSF -II for mining trapezoidal data streams.
OLSF and its variants combine online learning and streaming
feature selection to continuously learn from trapezoidal data
streams. Specifically, when new training instances carrying
new features arrive, a classifier updates existing features by
following the passive-aggressive update rule used in online
learning and updates the new features by following the
structural risk minimization principle. Feature sparsity is
then introduced by using feature projected truncation. Theo-
retical and empirical studies validate the performance of the
proposed algorithms. The contributions of this paper are
summarized as follows:

1) We study a new problem of learning from trapezoi-
dal data streams where training data change in both
data volume and feature space;

2) We propose a new learning algorithm OLSF and its
two variants. OLSF combines the merits of online
learning and streaming feature selection methods to
learn from doubly-streaming data;

3) We theoretically analyze the performance bounds of
the proposed algorithms;

4) We empirically validate the performance of the algo-
rithms extensively on 14 real-world data sets.

The remainder of the paper is organized as follows:
Section 2 surveys the related work. Section 3 introduces the
setting of the learning problem. Section 4 discusses the pro-
posed OLSF algorithm and its variants. Section 5 analyzes
the performance bounds. Section 6 conducts experiments
and Section 7 concludes the paper.

2 RELATED WORK

Our work is closely related to online learning, online feature
selection and online streaming feature selection.

Online learning represents an important family of efficient
and scalable data mining and machine learning algorithms
for massive data analysis [12], [13]. In general, online

learning algorithms can be grouped into two categories, the
first-order and second-order learning algorithms [12].

The first-order online learning algorithms exploit first order
information during update. The Perceptron algorithm [10],
[14] and Online Gradient Descent algorithm (OGD) [15]
are two well-known first-order online learning methods.
Moreover, a large number of first-order online learning
algorithms have been proposed recently that follow the cri-
terion of maximummargin principle [3], such as the Passive
Aggressive algorithms [2], Approximate Maximal Margin
Classification algorithm (ALMA) [16], and the Relaxed
Online MaximumMargin algorithms (ROMMA) [16].

The second-order online learning algorithms can better
explore the underlying structure between features [12].
Most second-order learning algorithms assume that the
weight vector follows a Gaussian distribution. The model
parameters, including both the mean vector and the covari-
ance matrix, are updated in the online learning process [12].
The Second-Order Perceptron (SOP) [17], Normal Herding
method via Gaussian Herding (NHERD) [18], Confidence-
Weighted learning, Soft Confidence Weighted algorithm
(SCW) [11], online learning algorithms by Improved Ellip-
soid (IELLIP) [19], and Adaptive Regularization of Weight
Vectors (AROW) [20], New variant of Adaptive Regulariza-
tion (NAROW) [21] are representative of the second-order
online learning algorithms.

Feature selection is a widely used technique for reducing
dimensionality. Feature selection chooses a small subset of
features while minimizing redundancy and maximizing rel-
evance to the class label in classification. Feature selection
can be categorized into supervised [22], [23], unsupervised
[24], [25] and semi-supervised [26], [27] algorithms.

Supervised feature selection can be categorized into filter
models, wrapper models and embedded models [28]. Filter
models separate feature selection from classifier learning so
that the bias of a learning algorithm does not interact with
the bias of a feature selection algorithm. The Relief [29],
Fisher score [30] and Information Gain based methods [31],
[32] are representative of this type of algorithm. Wrapper
models use the predictive accuracy of a predetermined
learning algorithm to determine the quality of selected fea-
tures. The embedded methods [33], [34], [35] integrate fea-
ture selection into model training, achieving model fitting
and feature selection simultaneously [36], [37]. The embed-
dedmethods are usually the fastest methods.

Unsupervised feature selection selects features that preserve
the original data similarity or manifold structures, and it is
difficult to evaluate the relevance of features [28], [38]. Lapla-
cian Score [39], spectral feature selection [40], and recently
proposed l2;1-norm regularized discriminative feature selec-
tion [41] are representative of unsupervised feature selection.
Semi-supervised feature selection is between supervised
methods and unsupervised methods. Under the assumption
that labeled and unlabeled data are sampled from the same
population generated by the target concept, semi-supervised
feature selection uses both labeled and unlabeled data to esti-
mate feature relevance [27].

Online feature selection [3] and sparse online learning [1],
[42] learn a sparse linear classifier from a sequence of high-
dimensional training instances. Online feature selection
combines feature selection with online learning and

Fig. 1. Each column is a document set. Observe that document sets
arrive as a continuous stream. In each column, the words in colored
boxes are new words introduced by document sets and the number
associated with each word is the importance rank for classification. For
example, in document set 16, the word “wolverin” in the blue box was
first observed and then became one of the most important words for
classification in Document set 39.
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resolves the feature selection in an online fashion by devel-
oping online classifiers that involve only a small and fixed
number of features for classification. OFS and OFSP [3] are
recently proposed representative algorithms.

Online streaming feature selection algorithms in which fea-
tures arrive one by one and training instances are available
before the training process starts have been studied recently
[5], [43]. The number of training instances remains fixed
through the process [4]. The goal is to select a subset of
features and train an appropriate model at each time step
given the features observed so far.

Compared with the above learning methods, the problem
studied in this paper is more challenging because of the
doubly streaming data scenario. Existing online learning,
online feature selection and online streaming feature selec-
tion algorithms are incapable of learning from trapezoidal
data streams.

3 PROBLEM SETTING

We consider the binary classification problem on trapezoidal
data streams. Let fðxt; ytÞjt ¼ 1; . . . ; Tg be a sequence of

input training data. Each xt 2 IRdt is a dt dimension vector
where dt�1 � dt and class label yt 2 f�1;þ1g for all t. At each
round, the classifier uses information on the current instance
to predict its label to be either þ1 or �1. After the prediction
has been made, the true label of the instance is revealed and

the algorithm suffers an instantaneous loss which reflects the
degree of infelicity of the prediction [2]. At the end of each
round, the algorithm uses the newly obtained instance-label
pair to improve its prediction rule for the rounds to come.

We restrict the discussion to a linear classifier based on a
vector of weights w which is the common setting in online
learning. The magnitude jw � xj is interpreted as the degree

of confidence in the prediction. wt 2 IRdt�1 denotes the clas-
sifier, i.e., the vector we aim to solve in the algorithm at
round t. wt has the same dimension as the instance xt�1, and
has either the same or smaller dimension as the current
instance xt, for all t ¼ 2; . . . ; T , and w1 is initialized with the
same dimension as x1. For the loss function, we choose the
hinge loss. Specifically, lðw; ðxt; ytÞÞ ¼ maxf0; 1� ytðw � xtÞg;
where w and xt are in the same dimension. In our study, the
ultimate dimension dT is very large, so we also introduce
feature selection into our learning algorithm. Table 1 dem-
onstrates the symbols and notations used in the paper.

4 ONLINE LEARNING WITH TRAPEZOIDAL DATA

STREAMS

In this section we present the Online Learning with Stream-
ing Features algorithm (OLSF ) and its two variants for min-
ing trapezoidal data streams. There are two challenges to be
addressed by the algorithms. The first is to update the classi-
fier with an augmenting feature space. The classifier update

TABLE 1
Symbols and Notations

Symbol Description

B B 2 ½0; 1�, proportion of selected features (projected feature space)

C C > 0, tradeoff in the objective function of OLSF -I and OLSF -II

dt; t ¼ 1; . . . ; T dt � dtþ1, dimension of instance xt
dwt ; t ¼ 1; . . . ; T dimension of classifier wt

� � > 0, regularization parameter

lt; t ¼ 1; . . . ; T lt ¼ lðw; ðxt; ytÞÞ, hinge loss on instance ðxt; ytÞ
l�t ; t ¼ 1; . . . ; T l�t ¼ lðPxtu; ðxt; ytÞÞ, hinge loss on instance ðxt; ytÞ based on the classifier u 2 IRdt

LT LT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT

t¼1 l
2
t

q
M the number of false predictions by OLSF -I in Theorem 3

rt; t ¼ 1; . . . ; T � 1 rt ¼ kwt �Pwtuk2 � kwtþ1 �Pwtþ1
uk2

R upper bound for the L1-norm of xt; t ¼ 1; . . . ; T

T T 2 Nþ, total number of instances

u u 2 IRdT , arbitrary vector in IRdT

UT UT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT

t¼1ðl�t Þ2
q

wt; t ¼ 1; . . . ; T wt 2 IRdt�1 ; t ¼ 2; . . . ; T; w1 2 IRd1 , classifier built at round t

jwt � xtj; t ¼ 1; . . . ; T confidence degree of xt with respect to classifier wt

~wtþ1; t ¼ 1; . . . ; T � 1 ~wtþ1 ¼ Pwtwtþ1, vector of elements wtþ1 projected to feature space wt

ŵtþ1; t ¼ 1; . . . ; T � 1 ŵtþ1 ¼ P:wtwtþ1, vector of elements wtþ1 not projected to the feature space wt

�wtþ1; t ¼ 1; . . . ; T � 1 intermediate variable of new classifier after the update operation

�wtþ1; t ¼ 1; ; T � 1 intermediate variable of new classifier on the L1 ball without truncation

Pwtþ1=wt
u; t ¼ 1; ; T � 1 vector of elements u projected to the feature space of wtþ1 but not to wt

xt; t ¼ 1; . . . ; T xt 2 IRdt , input training instance at time t in dt dimensions

~xt; t ¼ 2; . . . ; T ~xt ¼ Pwtxt; xt 2 IRdt ; wt 2 IRdt�1 ; dt�1 � dt, vector of elements xt projected to the feature space of wt

x̂t; t ¼ 2; . . . ; T x̂t ¼ P:wtxt; xt 2 IRdt ; wt 2 IRdt�1 ; dt�1 � dt, vector of elements xt not projected to the feature space of wt

fðxt; ytÞjt ¼ 1; 2; . . . ; Tg sequence of input training data

� slack variable

yt; t ¼ 1; . . . ; T yt 2 f�1;þ1g, real label of instance xt
ŷt; t ¼ 1; . . . ; T ŷt ¼ signðwt �PwtxtÞ, predicted label of instance xt
tt; t ¼ 1; . . . ; T learning rate variable
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strategy is able to learn from new features. We build the
update strategy based on the margin-maximum principle.
The second challenge is to build a feature selectionmethod to
achieve a sparse but efficient model. As the dimension
increases over time, it is essential to use feature selection to
prune redundant features. We use a truncation strategy
to obtain sparsity. Also, a projection step is introduced before
truncation to improve the truncation process.

Algorithm 1. The OLSF Algorithm and its Two Variants
OLSF -I and OLSF -II

1: Input:
� C > 0: the tradeoff parameter of OLSF -I and OLSF -II
� � > 0: the regularization parameter
� B 2 ð0; 1�: the proportion of selected features

2: Initialize:

� w1 ¼ ð0; . . . ; 0Þ 2 IRd1

3: For t ¼ 1; 2; . . . do
4: receive instance: xt 2 IRdt

5: predict: ŷt ¼ signðwt �PwtxtÞ
6: receive correct label: yt 2 fþ1;�1g
7: suffer loss: lt ¼ maxf0; 1� ytðwt �PwtxtÞg
8: update step:
9: � set parameter:
10: tt ¼ Parameter Setðxt; lt; CÞ

(See Algorithm 2)
11: � update wt to �wtþ1:

�wtþ1 ¼ ½wt þ ttytPwtxt; ttytP:wtxt�
12: sparsity step:
13: � project �wtþ1 to a L1 ball:

�wtþ1 ¼ minf1; �
k �wtþ1k1g �wtþ1

14: � truncate �wtþ1 to wtþ1:
wtþ1 ¼ Truncateð �wtþ1; BÞ

(See Algorithm 3)
15: end for

Algorithm 2. tt ¼ Parameter Setðxt; lt; CÞ
1: if OLSF :

tt ¼ lt
kxtk2

2: else if OLSF -I:
tt ¼ minfC; lt

kxtk2
g

3: else if OLSF -II:
tt ¼ lt

kxtk2þ 1
2C4: end if

Algorithm 3. w ¼ Truncateð �w;BÞ
1: �w 2 IRd �w

2: if k �wk0 � B � d �w then
3: w ¼ �wB

�wB is �w, and remain maxf1; floorðB � d �wÞg largest ele-
ments; set others to zero, where floorfxg is the largest
integer smaller then x.

4: else
5: w ¼ �w
6: end if

The pseudo-codes for the OLSF algorithm and its two var-
iants are given in Algorithms 1, 2 and 3 (OLSF -I and OLSF -II

are different to OLSF in parameter tt during updates). The
vector w1 is initialized to a zero vector with dimension d1,

i.e., w1 ¼ ð0; . . . ; 0Þ 2 IRd1 for all three algorithms, where d1 is
the dimension of the first instance for each algorithm. Online
learning is then divided into the update step and the sparsity
step.

4.1 The Update Strategy

The three algorithms are different in their update strategy.
We first focus on the update strategy of the basic algorithm.
At round t, with the classifier wt 2 IRdt�1 , the new classifier

wtþ1 ¼ ½ ~wtþ1; ŵtþ1� 2 IRdt is obtained as the solution to the
constrained optimization problem in (2), where ~w ¼
Pwtwtþ1 2 IRdt�1 represents a projection of the feature space
from dimension dt to dimension dt�1, it is a vector consisting
of elements of wtþ1 which are in the same feature space of wt,

and ŵ ¼ P:wtwtþ1 2 IRdt�dt1 denotes the vector consisting of
elements ofwtþ1 which are not in the feature space ofwt,

wtþ1 ¼ ½ ~wtþ1; ŵtþ1� ¼ argmin
w¼½ ~w;ŵ�:

lt¼0

1

2
k ~w� wtk2 þ 1

2
kŵk2; (1)

where lt ¼ lðw; ðxt; ytÞÞ is the loss at round t, which can be
written as,

lt ¼ lðw; ðxt; ytÞÞ ¼ maxf0; 1� ytð ~w � ~xtÞ � ytðŵ � x̂tÞg: (2)

Note that the definition of ~xt ¼ P ~wxt and x̂t ¼ Pŵxt is simi-
lar to those of ~w and ŵ respectively.

In the above constrained optimization problem, if the
existing classifier wt predicts the right label with the current
instance xt, i.e., lt ¼ maxf0; 1� ytðwt � ~xtÞg ¼ 0, then we eas-
ily know that the optimal solution is ~w ¼ wt; ŵ ¼ ð0; . . . ; 0Þ,
that is, wtþ1 ¼ ½wt; 0; . . . ; 0�:

On the other hand, if the existing classifier makes a
wrong prediction, the algorithm forces the updated classi-
fier to satisfy the constraint in (1). At the same time, it also
forces ~wtþ1 close to wt in order to inherit information and let
ŵtþ1 be small to minimize structural risk and avoid overfit-
ting. The solution to (1) has a simple closed form,

wtþ1 ¼ ½wt þ ttyt~xt; ttytx̂t�; where tt ¼ lt=kxtk2: (3)

We now discuss the derivation of the update strategy.

� In case that the dimension of the new classifier does
not change, i.e., dt ¼ dt�1, the problem degenerates
to an online learning problem where ŵtþ1 disappears
and wtþ1 ¼ ~wtþ1.

� In case that dt > dt�1 and lt ¼ 0, the optimal solution
is ~wtþ1 ¼ wt and ŵtþ1 ¼ ð0; . . . ; 0Þ.

� In case that dt > dt�1 and lt > 0, we solve (1) to
obtain the solution.

To solve (1), we use the Lagrangian function and the
Karush-Khun-Tucker conditions [44] on (2) and obtain

Lðw; tÞ ¼ 1

2
k ~w� wtk2 þ 1

2
kŵk2

þ tð1� ytð ~w � ~xtÞ � ytðŵ � x̂ÞÞ
~w ¼ wt þ tyt~xt; ŵ ¼ tytx̂t;

(4)
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where t is a Lagrange multiplier. Plugging the last two
equations into the first equation, taking the derivative of
LðtÞwith respect to t and setting it to zero, we obtain

LðtÞ ¼ � 1

2
t2k~xtk2 � 1

2
t2kx̂k2 þ t � tytðwt � ~xÞ

tt ¼ 1� ytðwt � ~xtÞ
k~xk2 þ kx̂tk2

¼ lt

kxtk2
:

(5)

The update strategy is thus wtþ1 ¼ ½wt þ ttyt~xt; ttytx̂t�,
where tt ¼ lt=kxtk2. In addition, this update rule is also app-
liedwhen lt ¼ 0, sowe can adopt it as a general update rule.

From (1), we can see that the update strategy of the OLSF

algorithm is rigorous because the new classifier needs to
predict the current instance correctly. This may make the
model sensitive to noise, especially label noise [2]. To avoid
this drawback, we give two general updated variants of the
OLSF algorithm which use the soft-margin technique by
introducing a slack variable � into the optimization prob-
lem. The first algorithm is abbreviated as OLSF -I. Its objec-
tive function scales linearly with �, namely,

wtþ1 ¼ argmin
w¼½ ~w;ŵ�:
lt��;��0 :

1

2
k ~w� wtk2 þ 1

2
kŵk2 þ C� (6)

The second algorithm, OLSF -II, is the same as OLSF -I
except that its objective function scales quadratically with
the slack variable �, i.e.,

wtþ1 ¼ argmin
w¼½ ~w;ŵ�:

lt�� :

1

2
k ~w� wtk2 þ 1

2
kŵk2 þ C�2 (7)

In these two optimization problems, parameter C is a
positive number which is a tradeoff between rigidness
and slackness. A larger value of C implies a more rigid
update step.

The update strategy of OLSF -I and OLSF -II also shares
the simple closed form wtþ1 ¼ ½wt þ ttyT ~xt; tytx̂t�, where

tt ¼ min C;
lt

kxtk2
( )

ðIÞ or tt ¼ lt

kxtk2 þ 1
2C

ðIIÞ:

The update strategies of OLSF -I and OLSF -II are similar to
the OLSF algorithm, so we omit their details due to space
constraints.

4.2 The Sparsity Strategy

In many applications, the dimension of training instances
increases rapidly and we need to select a relatively small
number of features.

In our study, we introduce a parameter to control the pro-
portion of the features used. For example, in each trial t, the

learner presents a classifier wt 2 IRdt�1 to classify instance

xt 2 IRdt where dt�1 � dt . After the update operation, a
projection and a truncation are introduced to prune redun-
dant features based on the parameter B, which is located
in ½0; 1�. We require the learner to only retain at most

a proportion of B nonzero elements of wt 2 IRdwt , i.e.
kwtk0 � B � dwt : If the resulting classifier wt has more than a
proportion of B nonzero elements, we will simply keep the
proportion of B elements in wt with the largest absolute

weights, as demonstrated in Algorithm 3. In this way, at
most a proportion of B features are used in the model and
sparsity is introduced.

We introduce a projection step because a single trunca-
tion step does not work well. Although the truncation
selects the B largest elements, this does not guarantee that
the numerical values of the unselected attributes are suffi-
ciently small and may potentially lead to poor performance
[3]. When projecting a vector to an L1 ball, most of its
numerical values are concentrated to its largest elements, so
removing the smallest elements will result in a small change
to the original vector. The projection is,

�wtþ1 ¼ min 1;
�

k �wtþ1k1

� �
�wtþ1; (8)

where � is the a positive regularization parameter.

5 THEORETICAL ANALYSIS

In this section,wederive the performance bounds of theOLSF

algorithm and its two variants OLSF -I and OLSF -II. There are
four theorems and one lemma in this section. The first theo-
rem discusses the upper bound of the cumulative squared
hinge loss of OLSF when data are linearly separable, and the
second derives the boundwhen data are linearly inseparable.
The third and fourth theorems relate to the upper bounds of
the OLSF -I andOLSF -II algorithms respectively.

If instance xt is falsely predicted, then ytðwt �PwtxtÞ < 0,
and the loss function lt > 1, thus the cumulative squared

hinge loss
P

t l
2
t is an upper bound of the number of false

predictions [2]. The loss bound will therefore be the upper
bound of the total number of false predictions and the
cumulative squared hinge loss. Our bounds essentially
prove that our algorithms perform no worse than the best
fixed prediction, which is chosen in hindsight for any
sequence of instances.

For clarity, we use two abbreviations throughout the
paper. We denote by lt the instantaneous loss suffered by
our algorithm at round t. In addition, we denote by l�t the

loss of an off-line predictor at round t. Formally, let u 2 IRdT

be an arbitrary vector in IRdT , we define lt and l�t as follows,

lt ¼ lðwt; ðPwtxt; ytÞÞ and l�t ¼ lðPxtu; ðxt; ytÞÞ: (9)

We then have Lemma 1 as follows.

Lemma 1. Let ðx1; y1Þ; . . . ; ðxT ; yT Þ be a sequence of training

instances, where xt 2 IRdt ; dt�1 � dt and yt 2 fþ1; �1g for all

t. Let the learning rate tt 2 f lt
kxtk2

;minfC; lt
kxtk2

g; lt
kxtk2þ 1

2C

g, as
given in Algorithm 2. The following bound then holds for any

u 2 IRdT ,
PT

t¼1 ttð2lt � ttkxtk2 � 2l�t Þ � kuk2

Proof. Define rt to be kwt �Pwtuk2 � kwtþ1 �Pwtþ1
uk2. We

prove the lemma by summing allrt over t in 1; . . . ; T and
bounding this sum. Note that

P
t rt is a telescopic sum

which collapses to

XT�1

t¼1

rt ¼
XT�1

t¼1

ðkwt �Pwtuk2 � kwtþ1 �Pwtþ1
uk2Þ

¼ kw1 �Pw1
uk2 � kwT �PwT

uk2; (10)
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where w1 is initialized as a zero vector, and kwT�
PwT

uk2 � 0 always holds. Thus, we can upper bound

the right-hand side of the above equation by kPw1
uk2,

XT�1

t¼1

rt � kPw1
uk2: (11)

We now turn to bounding every single rt. If the mini-
mum margin requirement is not violated on round t, i.e.
lt ¼ 0, then tt ¼ 0 and hence rt � 0. Now we only focus
on rounds on which lt > 0. With the update strategy
�wtþ1 ¼ ½wt þ ttytPwtxt; ttytP:wtxt� where P:wtxt is a vec-
tor consisting of elements in x which are not in the same
feature space of wt. In light of the fact that �wtþ1 � �wtþ1

and wtþ1 � �wtþ1 we have

rt ¼ kwt �Pwtuk2 � kwtþ1 �Pwtþ1
uk2

� kwt �Pwtuk2 � kwt þ ttytPwtxt �Pwtuk2

� kttytP:wtxt �Pwtþ1 wtuk2

¼ �2ttytPwtxtðwt �PwtuÞ � t2t kPwtxtk2 � kttytP:wtxt

�Pwtþ1=wt
uk2:

(12)

From lt ¼ 1� ytðwt �PwtxtÞ and l�t � 1� ytðPxtu � xtÞ;
we have ytðwt �PwtxtÞ ¼ 1� lt and ytðPwtu �PwtxtÞþ
yT ðPwtþ1=wt

u �Pwtþ1=wt
xtÞ � 1� l�t . Using these two facts

in Eq. (12) gives,

rt � 2ttðytPwtxtPwtuþ ytPwtþ1=wt
xtPwtþ1=wt

u

� ytPwtxtwtÞ � t2t kxtk2 � kPwtþ1=wt
uk2

� ttð2lt � 2l�t � ttkxtk2Þ � kPwtþ1=wt
uk2: (13)

Summingrt over all t and comparing the lower bound
of (13) with the upper bound in (11), we obtain

XT
t¼1

ttð2lt � 2l�t � ttkxtk2Þ � kPw1
uk2 þ

XT�1

t¼1

kPwtþ1=wt
uk2:

The lemma is proved. tu
Below we first prove a loss bound for the OLSF algorithm

in the linearly separable case. We assume that there is a

classifier u 2 IRdT such that ytðPxtu � xtÞ > 0 for all t 2
f1; . . . ; Tg. Without loss of generality, we assume that classi-
fier u is scaled such that ytðPxtu � xtÞ � 1. The loss of u is
zero on all T instances in the sequence, and we have the fol-
lowing bound of the cumulative squared loss of OLSF .

Theorem 1. Let ðx1; y1Þ; . . . ; ðxT ; yT Þ be a sequence of instances
where xt 2 IRdt , dt�1 � dt, yt 2 fþ1;�1g and kxtk � R for
all t. Assume that there exists a classifier u such that l�t ¼ 0
for all t. The cumulative squared loss of OLSF on the sequence
is then bounded by

XT
t¼1

l2t � kuk2R2:

Proof. Since l�t ¼ 0 for all t, Lemma 1 implies that,

XT
t¼1

ttð2lt � ttkxtk2Þ � kuk2: (14)

According to the definition tt ¼ lt
kxtk2

, we have

XT
t¼1

l2t
kxtk2

� kuk2

and

XT
t¼1

l2t � kuk2R2:

Hence, the theorem is proved. tu
The following theorems generalize the linearly separable

case. We consider that the classifier u cannot perfectly sepa-
rate the training data. In addition, we assume that the input

sequence is normalized so that kxtk2 ¼ 1. We then have the
following bounds of the cumulative squared loss of the
OLSF algorithm.

Theorem 2. Let ðx1; y1Þ; . . . ; ðxT ; yT Þ be a sequence of instances
where xt 2 IRdt , dt�1 � dt, yt 2 fþ1;�1g and kxtk2 ¼ 1 for

all t. For any vector u 2 IRdT , the cumulative squared loss of
OLSF on the sequence is then bounded by

XT
t¼1

l2t � kuk þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT
t¼1

ðl�t Þ2
vuut

0
@

1
A

2

: (15)

Proof. Since kxtk2 ¼ 1, tt and lt are equal, according to

Lemma 1, we have
PT

t¼1 l
2
t � kuk2 þPT

tþ1 2lt � l�t : Denote

LT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiXT
t¼1

l2t

vuut and UT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT
t¼1

ðl�t Þ2
vuut :

By using the Cauchy-Schwartz inequality to bound the
right-hand side of (15), we obtain

L2
T � kuk2 þ 2LTUT :

Therefore, to obtain an upper bound of LT , we need to

find the largest solution of L2
T � 2UTLT � kuk2 ¼ 0, i.e.,

UT þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2
T þ kuk2

q
:

Using the fact that
ffiffiffiffiffiffiffiffiffiffiffiffi
aþ b

p � ffiffiffi
a

p þ ffiffiffi
b

p
, we have

LT � kuk þ 2UT :

We then obtain

XT
t¼1

l2t � kuk þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT
t¼1

ðl�t Þ2
vuut

0
@

1
A

2

and the theorem is proved. tu
Next we derive the bound for OLSF -I. The following the-

orem provides an error rate bound of OLSF -I based on the
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total number of falsely predicted instances that yt 6¼
signðwt �PwtxtÞ .
Theorem 3. Let ðx1; y1Þ; . . . ; ðxT ; yT Þ be a sequence of instances,

where xt 2 IRdt , dt�1 � dt, yt 2 fþ1;�1g and kxtk2 � R2 for

all t. For any vector u 2 IRdT , the number of false predictions
by OLSF -I is bounded by,

max R2;
1

C

� �
kuk2 þ 2C

XT
t¼1

l�t

 !
;

where C is the parameter in OLSF -I.

Proof. If OLSF -I outputs a false prediction at round t,
then ytðwt �PwtxtÞ � 0; so lt � 1. Under the assumption

kxtk2 � R2 and the definition tt ¼ minflt=kxtk2; Cg, for
the error occurring at round t, we have

min
1

R2
; C

� �
M �

XT
t¼1

ttlt;

whereM is the number of false predictions by OLSF -I.
Based on the definition of tt, we know that ttl

�
t � Cl�t

and ttkxtk2 � lt . Plugging these two inequalities into
Lemma 1 gives the result,

XT
t¼1

ttlt � kuk2 þ 2C
XT
t¼1

l�t :

Combining the above two inequations, we obtain that

minf1=R2; CgM � kuk2 þ 2C
XT
t¼1

l�t :

The theorem is proved by multiplying both sides of the
above inequation withmaxfR2; 1=Cg. tu
Now, we turn to the bound analysis for OLSF -II.

Theorem 4. Let ðx1; y1Þ; . . . ; ðxT ; yT Þ be a sequence of instances
where xt 2 IRdt , dt�1 � dt, yt 2 fþ1;�1g and kxtk2 � R for

all t. Then, for any classifier (vector) u 2 IRdT , the cumulative
squared loss of OLSF -II is bounded by,

XT
t¼1

l2t � R2 þ 1

2C

� �
kuk2 þ 2C

XT
t¼1

ðl�t Þ2
 !

:

Proof. Lemma 1 states that

kuk2 �
XT
t¼1

ð2ttlt � t2kxtk2 � 2ttl
�
t Þ:

Define a ¼ 1=
ffiffiffiffiffiffiffi
2C

p
, and by subtracting the non-negative

term ðatt � l�t =aÞ2 from each result on the right-hand side
of the above inequality, we can obtain

kuk2 �
XT
t¼1

ð2ttlt � t2kxtk3 � 2ttl
�
t � ðatt � l�t =aÞ2Þ

¼
XT
t¼1

ð2ttlt � t2ðkxtk2 þ a2Þ � ðl�t Þ2=a2Þ: (16)

Plugging in the definition of a, and using the defini-

tion tt ¼ lt=ðkxtk2 þ 1=ð2CÞÞ, we can obtain the following
lower bound,

kuk2 �
XT
t¼1

l2t
kxtk2 þ 1

2C

� 2Cðl�t Þ2
 !

:

Replacing kxtk2 with its upper bound of R2 and rear-
ranging the terms gives the desired bound. tu

6 EXPERIMENTS

In this section, we empirically evaluate the performance of
OLSF and its two variants OLSF -I and OLSF -II.

1

The experiments are conducted from four aspects. First,
we evaluate the performance of the proposed three algo-
rithms with respect to classification accuracy, projected fea-
ture space B, and tradeoff C in Section 6.1. Second, we
evaluate the update strategy and the sparse strategy used in
the three algorithms by comparing them with three bench-
mark methods in Section 6.2. Third, we compare the pro-
posed algorithms with the state-of-the-art online feature
selection algorithms in Section 6.3. Lastly, we test the appli-
cations of the proposed algorithms on two real-world trape-
zoidal data streams in Section 6.4.

Experimental setup. We test on 12 UCI data sets and two
real-world large-scale streams as listed in Table 2.

To simulate trapezoidal streams, we split the data sets
into 10 chunks, each of which carries only 10 percent instan-
ces and a variant number of features. For example, the first
data chunk carries the first 10 percent instances with the
first 10 percent features. The second data chunk carries the
second 10 percent instances with another 10 percent fea-
tures (in total 20 percent features).

We measure the performance in terms of average predic-
tion accuracy. The experiments are repeated 20 times with a
random permutation on the data sets. The results are
reported by an average over the 20 repeats.

We set � to be 30, C from 10�4 to 104 with a step of 101,
and B from 0 to 1. The parameters are chosen with cross
validation.

TABLE 2
The Data Sets Used in the Experiments

Dataset ] instances ] Dimensions

wpbc 198 34
ionosphere 351 35
wdbc 569 31
isolet 600 618
wbc 699 10
german 1,000 24
svmguide3 1,234 21
splice 3,175 60
HAPT 3,266 562
spambase 4,601 57
magic04 19,020 10
a8a 32,561 123
rcv1 697,641 47,236
URL 2,396,130 3,231,961

1. The Matlab source codes are available online at https://github.com/
BlindReview/onlineLearning
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6.1 Experiment I: Comparisons Between OLSF and
its Two Variants

In this section, we present the empirical results of the three
algorithms on the 12 UCI benchmark data sets.

Table 3 summarizes the performance of the three algo-
rithms on a projected feature space. We observe that OLSF -I
performs the best on six data sets, a8a, german, HAPT,
magic04, spambase, wpbc, OLSF -II performs the best on the
remaining six date sets, ionosphere, isolet, splice,
svmguide3, wbc, wdbc. Of the three algorithms, OLSF

performs the worst on all 12 data sets. This is because the 12
UCI data sets contain noise, OLSF which relies on a strict
update strategy overfits the noise and thus performs the
worst. In contrast, OLSF -I and OLSF -II, which use a “soft”
update strategy, avoid overfitting. Furthermore, we can see
that OLSF -I scales well on large data sets, while OLSF -II per-
forms the best on small data sets. This is because OLSF-I
scales linearly with the slack variable.

Fig. 2 shows the error rate with respect to the streaming
iterations on the 12 data sets. Similar to the above results,
we observe that both OLSF -I and OLSF -II consistently out-
perform OLSF . In addition, the performance gain of OLSF-I
and OLSF-II is raised with a large probability when new
training instances arrive. This observation is validation that
OLSF -I and OLSF -II, by using slack variants to obtain soft
update, avoid overfitting to noise.

Fig. 3 shows the performance of the three algorithms on
different projected feature space B. We can observe that
OLSF -I and OLSF -II often outperform OLSF . The results
show the robustness of OLSF -I and OLSF -II in different sub-
space defined by B.

Fig. 4 shows the performance of the three algorithms
under different tradeoff C. From the results, we observe
that varying parameter C alters the error rate of OLSF -I and
OLSF -II. The larger C is, the closer OLSF -I is to OLSF . This is
because parameter tt in OLSF -I is smaller than both parame-
ter C and parameter tt in OLSF . When C is very large, OLSF -
I degenerates to OLSF .

6.2 Experiment II: Comparisons with Benchmarks

We compare the proposed algorithms with three bench-
mark methods. According to the similar performance of

TABLE 3
The Average Number of Prediction Errors

on the 12 UCI Data Sets

Algorithms a8a german HAPT

OLSF 12673:5	 75:9 415:9	 15:6 257.0 	 8.5
OLSF -I 11204.7 	 713.1 366.9 	 8.8 167.0 	 7.1
OLSF -II 11317.2 	 233.1 366.9 	 12.8 191.0 	 9.9

Algorithms ionosphere isolet magic04

OLSF 55.0 	 2.8 23.5 	 4.9 8051:3	 49:0
OLSF -I 55.0 	 2.8 21.5 	 2.1 6732.3 	 73.3
OLSF -II 50.5 	 6.4 18.0 	 4.2 6924:5	 39:6

Algorithms spambase splice svmguide3

OLSF 1132:1	 29:7 1314:6	 30:3 396:7	 15:8
OLSF -I 1004.5 	 25.6 1243:7	 13:6 359:1	 42:9
OLSF -II 1013.2 	 26.1 1238.8 	 16.8 357.5 	 26.9

Algorithm wbc wdbc wpbc

OLSF 37.5 	 0.7 43.5 	 3.5 88.5 	 2.1
OLSF -I 35.5 	 0.7 39.5 	 0.7 82.0 	 8.5
OLSF -II 34.0 	 4.2 38.5 	 4.9 83.0 	 1.4

Fig. 2. Comparison of the proposed three algorithms OLSF , OLSF -I, and OLSF -II on the 12 UCI data sets. Observe that OLSF -I and
OLSF -II outperform OLSF because their “soft” update strategies avoid overfitting to noise.
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Fig. 3. Performance comparison of the projected feature spaceB. The results show that OLSF -I and OLSF -II are robust algorithms under different pro-
jected subspaces B.

Fig. 4. The average number of error predictions with respect to parameter C. We can choose the best parameter for the algorithms on the 12 UCI
data sets.
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OLSF -I and OLSF -II, we use OLSF -I as the representative
algorithm in this section.

We now introduce the three benchmark methods. The
first algorithm is OLISF -all. Unlike OLSF -I, which only uses
a small projected feature space for learning, OLISF -all uses
all features for learning. The second algorithm isOLISF -rand
which uses randomly selected features for learning. The
third algorithm is OLISF -per which uses the Perceptron
update strategy for learning, i.e., wtþ1 ¼ ½wt þ ytxt; ytxt� [10].
We still use the 12 UCI data sets for our evaluation. The
parameter settings are the same as in Experiment I.

Table 4 lists the average number of error predictions of
the four algorithms on the 12 UCI data sets with different
values of the parameter B. First, we observe that OLSF -I
obtains the best results on 10 data sets out of 12. It even
beats the OLISF -all algorithm which uses all the features for
learning. Compared to the other two algorithms, OLISF -
rand and OLISF -per, OLSF -I outperforms them under differ-
ent B. The OLSF I-rand algorithm randomly chooses a fixed
proportion of features which receives the worst perfor-
mance on all the 12 data sets. The OLSF I-per algorithm
which uses the Perceptron update strategy has higher error
rates than OLSF -I on all the 12 data sets, which shows that
our update is better than Perceptron update.

To sum up, the results show that the sparsity strategy in
OLSF -I significantly improves performance and our update
strategy outperforms the Perceptron update strategy.

Fig. 5 shows the results of the online average error rates
during the online learning on the 12 data sets. It can be seen
that the error rate of the algorithms decreases rapidly and
becomes stable. OLSF -I obtains the best results on all the
data sets, while OLISF -rand obtains the worst results. The
observation validates the results in Table 4.

To further examine the performance of these four algo-
rithms, Fig. 6 shows the performance of the four algo-
rithms with respect to different feature sets. The OLSF -I

algorithm outperforms the other three benchmark algo-
rithms on the same feature sets. In particular, OLSF -I sig-
nificantly outperforms the others when the subspace is
very sparse, i.e., parameter B is very small. The results
show that the OLSF -I algorithm achieves better sparsity
and OLSF -I performs well in a sparse feature space. This
encouraging result verifies the efficacy of the proposed
algorithms. Compared to OLSF I-all, which uses all fea-
tures for learning, OLSF -I achieves better results with
sparser features.

6.3 Experiment III: Comparisons with
State-of-the-Art Online Feature
Selection Algorithms

In this section, we compare the proposed OLSF -I and
OLSF -II algorithms with the Online Feature Selection algo-
rithms (OFS for short) proposed by Wang et al. [3] and its
variant OFSP , i.e., OFS with partial feature sets.

The OFS algorithm accesses all the features for training
and efficiently identifies a fixed number of relevant features
for prediction by using a gradient-based online learning
update strategy and an l2-norm projected truncation
approach. OFSP assumes that only a partial number of fea-
tures can be selected based on Bernoulli distribution and
then used for learning. The original codes of OFS and OFSP
can be obtained online at http://OFS.stevenhoi.org/.

In this section, we set the parameter B ¼ 0:1, i.e., we use
10 percent features for learning at each round t. The tradeoff

parameter C ranges from 10�4 to 104. OLSF -I and OLSF -II
use 50 percent of the features for learning before 10 percent
training instances are observed. The algorithm continuously
observes an additional 10 percent features at each new data
chunk.

Table 5 and Fig. 7 show the average number of error pre-
dictions of the four algorithms. We observe that OLSF -I
obtains the lowest error rate on the six data sets. Moreover,

TABLE 4
The Average Number of Error Predictions on the 12 UCI Data Sets with Respect to Parameter B

Algorithms a8a german HAPT magic04 ionosphere isolet

B ¼ 0:04 OLSF -I 87.2 	 8.8 56.8 	 21.3 19020.0	 0.0 313.2 	 55.2 788.4 	 38.2 628.6 	 42.5
OLSF I-rand 133.0 	 4.5 190.2 	 10.0 19020.0	 0.0 1318.6	 31.8 1041.0	 9.3 791.2 	 11.1
OLSF I-per 141.9 	 6.3 92.5 	 40.6 19020.0	 0.0 737.0 	 171.8 1034.7	 29.0 868.3 	 18.2

B ¼ 0:16 OLSF -I 83.2 	 6.9 15.7 	 3.9 7379.2	 98.2 164.1 	 14.8 348.3 	 49.4 402.2 	 39.7
OLSF I-rand 112.5 	 6.4 144.4 	 8.3 13107.3	 53.1 1158.1	 27.9 720.3 	 13.3 582.4 	 11.3
OLSF I-per 141.2 	 5.8 35.4 	 12.4 13143.5	 52.7 441.0 	 51.1 828.9 	 51.2 711.9 	 17.1

B ¼ 0:64 OLSF -I 82.6 	 3.7 25.6 	 2.9 5882.2	 105.3 182.4 	 41.9 364.4 	 11.0 326.7 	 7.0

OLSF I-rand 91.3 	 4.8 69.7 	 5.6 8361.8	 60.0 779.6 	 15.2 570.2 	 20.3 456.0 	 18.9
OLSF I-per 83.4 	 3.5 32.5 	 3.1 6864.1	 49.5 420.6 	 17.7 368.3 	 51.7 365.0 	 9.8

B ¼ 1:00 OLSF I-all 79.3 	 3.3 16.7 	 1.8 6634.3	 35.2 157.0 	 8.9 360.9 	 7.2 344.1 	 7.1

Algorithms spambase splice svmguide3 wbc wdbc wpbc

B ¼ 0:04 OLSF -I 108.7 	 38.4 683.0 	 0.0 100.9 	 12.4 850.2 	 69.9 1397.2	 176.1 7488.4	 93.7
OLSF I-rand 375.8 	 7.3 683.0 	 0.0 234.7 	 6.3 2026.5	 26.5 2808.7	 28.1 18249.4	 59.3
OLSF I-per 469.4 	 14.1 683.0 	 0.0 225.3 	 8.6 2221.1	 43.5 2980.9	 80.9 20265.0	 285.0

B ¼ 0:16 OLSF -I 65.8 	 13.1 77.2 	 15.7 63.3 	 8.7 728.1 	 20.7 835.3 	 109.0 8680.3	 316.9

OLSF I-rand 240.5 	 10.4 405.5 	 7.8 186.6 	 6.4 1532.0	 30.4 1935.5	 38.0 16087.6	 102.8
OLSF I-per 327.0 	 14.1 529.6 	 8.5 220.5 	 7.0 1308.8	 34.5 1248.8	 96.3 9659.6	 1444.9

B ¼ 0:64 OLSF -I 40.6 	 4.3 31.3 	 3.0 54.8 	 3.1 683.7 	 14.2 571.1 	 15.3 9265.4	 115.4
OLSF I-rand 87.4 	 7.0 79.2 	 7.7 115.9 	 8.5 1464.2	 33.4 1601.9	 23.4 15341.5	 71.0
OLSF I-per 63.4 	 3.8 85.9 	 6.3 60.0 	 4.7 1244.8	 25.3 1003.7	 26.9 11325.6	 127.5

B ¼ 1:00 OLSF I-all 57.5 	 3.7 82.9 	 6.4 55.3 	 2.7 1236.1	 29.5 983.6 	 21.7 10243.0	 109.8
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OLSF -I significantly outperforms both OFS and OFSP . When
comparing OLSF -II with OFSP and OFS, we can see that
OLSF -II performs better on the six data sets than OFSP .

OLSF -II also outperforms OFS on four data sets. This is
because OLSF -I and OLSF -II have better update strategies
than OFS and OFSP as a result of adding a flexible learning

Fig. 6. Online classification accuracy with respect to the parameter B. Observe that OLSF -I performs the best especially when the feature space is
sparse, i.e., B is very small.

Fig. 5. Comparison of the four algorithms under the online learning setting. Observe that OLSF -I obtains the best results on all 12 data sets because
its sparsity strategy significantly improves performance and outperforms the Perceptron update strategy.
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rate tt. We also observe that OLSF -I and OLSF -II are more
stable because their standard deviations are significantly
lower than those of OFS and OFSP .

We compare the online prediction performance in Fig. 8,
from which it can be seen that the error rate varies at each
iteration, where the curves of OLSF -I and OLSF -II descend
much more quickly than those of OFS and OFSP and even-
tually become stable with better results.

6.4 Experiment IV: Applications to Real-World
Trapezoidal Data Streams

In this section, we evaluate the performance of the proposed
algorithms on two real-world data streams. The data sets
can be downloaded online [45].

The task of the URL dataset [46] is to detect malicious URLs
from Webpage streams using the lexical and host-based fea-
tures ofURLs. In the task, URLs arrive continuously as streams,

and each URL carries lexical and host-based features that we
have never previously seen. The purpose is to continuously
learn a URL classifier that can identify malicious Webpages
from benign Webpages, thus the learning problem can be for-
mulated as online learning from trapezoidal data streams. The
task of rcv1 text classification is to categorize the JMLR articles
into different groups. Because new articles are published con-
tinuously with new research topics, this problem can be also
defined as online learning from trapezoidal data streams.

Table 6 shows the experimental results of the average
number of error predictions of the four algorithms. We set
the parameter B ¼ 0:001. The tradeoff parameter C ¼ 0:1.
From the results, we can see that OLSF-I, which uses only
0:1 percent features, performs similarly to OLSF-all that
uses all the features on the rcv1 dataset. Fig. 9 shows the
performance of the algorithms with respect to the number
of training instances when B ¼ 0:01, i.e., using 1 percent fea-
tures to learn. We can see that OLSF -I, OLSF -all, OLSF -per

Fig. 7. Comparison with respect to the average number of error predic-
tions. Observe that OLSF -I and OLSF -II perform better than OFS and
OFSP as a result of adding a flexible learning rate tt.

TABLE 5
Comparison With Respect to the Average Number

of Error Predictions

Algorithms a8a german magic04

OFS 9424.4 	 2545.8 432.8 	 13.6 6023.4 	 1342.3
OFSP 16931.0 	 164.6 589.3 	 33.9 10274.2 	 172.1
OLSF -I 9322.7 	 41.1 318.5 	 7.3 5858.4 	 29.6
OLSF -II 10709.3 	 56.0 348.7 	 11.6 5917.9 	 55.9

Algorithms spambase splice svmguide3

OFS 913.1 	 157.8 735.4 	 68.3 400.9 	 66.8
OFSP 1954.2 	 78.7 1418.1 	 70.5 701.5 	 42.5
OLSF -I 616.6 	 12.2 725.5 	 18.8 374.2 	 10.8
OLSF -II 690.7 	 14.0 748.7 	 16.0 382.1 	 11.4

Fig. 8. Comparison of online prediction. Observe that the curves of OLSF -I and OLSF -II descend much faster than those of OFS and OFSP and even-
tually become stable with lower error rates.
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converge quickly when the number of training instances
increases. Moreover, OLSF -I performs better than the other
three algorithms and converges to the lowest error rates.

6.5 Discussions

Multi-class classification. There are two methods, One vs Rest
and One vs One [47], that can extend the proposed algo-
rithms to multi-class classification by converting the prob-
lem to multiple binary classification problems [48]. For a
c-class problem in One vs One, it is often necessary to build
cðc� 1Þ=2 binary classifiers. From the model formulation
perspective, we can directly extend the vector-based models
to matrix-based models.

Semi-supervised classification. In many applications, labels
are provided only for a small number of data points [49],
[50]. Here, pseudo-labels can be used to enlarge a labeled
training set. We can use the classifiers trained from labeled
examples to predict the class labels (pseudo-labels) of unla-
beled examples. A semi-supervised learner can then be built
from both labeled and pseudo-labeled examples.

7 CONCLUSION

In this paper, we studied a new problem of online learning
from trapezoidal data streams in which both data volume
and feature space increase by time. We proposed a new
Online Learning with Streaming Features algorithm (OLSF )
and its two variants OLSF -I and OLSF -II as the solution.
Theoretical and empirical analysis demonstrate the perfor-
mance of the proposed algorithms.

ACKNOWLEDGMENTS

This work was supported by Australia ARC Discovery Proj-
ect (DP140102206), 973 Program of China (2013CB329604),
Australia ARC Linkage project (LP150100671), PCSIRT
of the Ministry of Education of China (IRT13059), NVIDIA
Foundation Compute the Cure, and NSFC of China
(61370025 and 61229301). Peng Zhang is the corresponding
author.

REFERENCES

[1] J. Langford, L. Li, and T. Zhang, “Sparse online learning via trun-
cated gradient,” J. Mach. Learn. Res., vol. 10, pp. 777–801, 2009.

[2] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer,
“Online passive-aggressive algorithms,” J. Mach. Learn. Res., vol. 7,
pp. 6551–6585, 2006.

[3] J. Wang, P. Zhao, S. C. Hoi, and J. Wan, “Online feature selection
and its applications,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 3,
pp. 698–710, Mar. 2014.

[4] X. Wu, K. Yu, W. Ding, H. Wang, and X. Zhu, “Online feature
selection with streaming features,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 35, no. 5, pp. 1178–1192, May 2013.

[5] X. Wu, K. Yu, H. Wang, and W. Ding, “Online streaming fea-
ture selection,” in Proc. 27th Int. Conf. Mach. Learn., 2010,
pp. 1159–1166.

[6] K. Zhai and J. Boyd-Graber, “Online latent Dirichlet allocation
with infinite vocabulary,” in Proc. 30th Int. Conf. Mach. Learn.,
2013, vol. 28, pp. 561–569.

[7] P. Zhang, C. Zhou, P. Wang, B. J. Gao, X. Zhu, and L. Guo, “E-tree:
An efficient indexing structure for ensemble models on data
streams,” IEEE Trans. Knowl. Data Eng., vol. 27, no. 2, pp. 461–474,
Feb. 2015.

[8] P. Zhang, B. J. Gao, P. Liu, Y. Shi, and L. Guo, “A framework for
application-driven classification of data streams,” Neurocomput-
ing, vol. 92, pp. 170–182, 2012.

[9] J. Kivinen and M. K. Warmuth, “Exponentiated gradient versus
gradient descent for linear predictors,” Inf. Comput., vol. 132,
no. 1, pp. 1–63, 1997.

[10] F. Rosenblatt, “The perceptron: A probabilistic model for informa-
tion storage and organization in the brain,” Psychological Rev.,
vol. 65, pp. 386–407, 1958.

[11] K. Crammer, M. Dredze, and A. Kulesza, “Multi-class confidence
weighted algorithms,” in Proc. Empirical Methods Natural Lang.,
2009, pp. 496–504.

[12] S. C. Hoi, J. Wang, and P. Zhao, “Libol: A library for online learn-
ing algorithms,” J. Machine Learning Research, vol. 15, no. 1,
pp. 495–499, 2014.

[13] Z. Peng, Z. Chuan, W. Peng, B. J. Gao, Z. Xingquan, and G. Li, “E-
tree: An efficient indexing structure for ensemble models on data
streams,” IEEE Trans. Knowl. Data Eng., vol. 27, no. 2, pp. 461–474,
Feb. 2015.

[14] Y. Freund and R. Schapire, “Large margin classification using the
perceptron algorithm,” J. Mach. Learn. Res., vol. 37, no. 3, pp. 277–
296, 1999.

[15] M. Zinkevich, “Online convex programming and generalized
infinitesimal gradient ascent,” in Proc. 20th Int. Conf. Mach. Learn.,
2003, pp. 928–936.

[16] C. Gentile, “A new approximate maximal margin classification
algorithm,” J. Mach. Learn. Res., vol. 2, pp. 213–242, 2001.

[17] N. Cesa-Bianchi, A. Conconi, and C. Gentile, “A second-order per-
ceptron algorithm,” SIAM J.Comput., vol. 34, no. 3, pp. 640–668, 2005.

[18] K. Crammer and D. D. Lee, “Learning via Gaussian herding,” in
Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 451–459.

[19] L. Yang, R. Jin, and J. Ye., “Online learning by ellipsoid method,”
in Proc. 26th Int. Conf. Mach. Learn., 2009, p. 145.

[20] K. Crammer, A. Kulesza, and M. Dredze, “Adaptive regulariza-
tion of weight vectors,” in Proc. Adv. Neural Inf. Process. Syst.,
2009, pp. 414–422.

[21] F. Orabona and K. Crammer, “New adaptive algorithms for
online classification,” in Proc. Adv. Neural Inf. Process. Syst., 2010,
pp. 1840–1848.

[22] J. Weston, A. Elisseff, B. Schoelkopf, and M. Tipping, “Use of the
zero normwith linear models and kernel methods,” J. Mach. Learn.
Res., vol. 3, pp. 1439–1461, 2003.

[23] L. Song, A. Smola, A. Fretton, K. Borgwardt, and J. Bedo,
“Supervised feature selection via dependence estimation,” Proc.
24th Int. Conf. Mach. Learn., 2007, pp. 823–830.

[24] J. Dy and C. Brodley, “Feature selection for unsupervised
learning,” J. Mach. Learn. Res., vol. 5, pp. 845–889, 2004.

[25] P. Mitra, C. A. Murthy, and S. Pal, “Unsupervised feature selec-
tion using feature similarity,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 24, no. 3, pp. 301–312, Mar. 2002.

[26] Z. Xu, I. King, M. R.-T. Lyu, and R. Jin, “Discriminative semi-
supervised feature selection via manifold regularization,” IEEE
Trans. Neural Netw., vol. 21, no. 7, pp. 1033–1047, 2010.

Fig. 9. Performance on real trapezoidal data streams(B ¼ 0:01).

TABLE 6
Comparison of the Average Number

of Error Predictions (B ¼ 0:001)

Algorithms rcv1 URL

OLSF -I 239582.0 	 1104.2 599352.0 	 8888.1
OLSF I-all 235280.8 	 1459.4 607019.6 	 8051.6
OLSF I-rand 482310.1 	 443.5 1520743.8 	 12546.3
OLSF I-per 329572.6 	 1113.5 602546.8 	 9063.3

ZHANG ET AL.: ONLINE LEARNING FROM TRAPEZOIDAL DATA STREAMS 2721



[27] Z. Zhao and H. Liu, “Semi-supervised feature selection via spec-
tral analysis,” in Proc. SIAM Int. Conf. Data Mining. SIAM,
pp. 641–646, 2007.

[28] J. Tang, S. Alelyani, and H. Liu, “Feature selection for classifica-
tion: A review,” Data Classification: Algorithms and Applications.
Boca Raton, FL: CRC Press, 2014.

[29] M. R. Sikonja and I. Kononenko, “Theoretical and empirical analysis
of reliefF and RrelieF,” J.Mach. Learn. Res., vol. 53, pp. 23–69, 2003.

[30] R. Duda, P. Hart, and D. Stork, Pattern Classification.Hoboken, NJ:
Wiley, 2012.

[31] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual
information: Criteria of max-dependency, max-relevance and
min-redundancy,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27,
no. 8, pp. 1226–1238, Aug. 2005.

[32] Z. Xu, R. Jin, J. Ye, M. Lyu, and I. King, “Non-monotonic feature
selection,” in Proc. 26th Int. Conf. Mach. Learn., 2009, p. 144.

[33] J. Bi, K. Bennett, M. Embrechts, C. Breneman, and M. Song,
“Dimensionality reduction via sparse support vector machines,”
J. Mach. Learn. Res., vol. 3, pp. 1229–1243, 2003.

[34] N. Vasconcelos, A. B. Chan, and G. Lanckriet, “Direct convex
relaxations of sparse SVM,” in Proc. 24th Int. Conf. Mach. Learn.,
2007, pp. 145–153.

[35] Y. Zhou, R. Jin, and S. Hoi, “Exclusive lasso for multi-task feature
selection,” J. Mach. Learn. Res., vol. 9, pp. 988–995, 2010.

[36] J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA:
Morgan Kaufmann, 1993.

[37] N. C. Talbot, G. C. Cawley, and M. Girolami, “Sparse multimonial
logistic regression via Bayesian l1 regularisation,” in Proc. Adv.
Neural Inf. Process. Syst., 2006, pp. 209–216.

[38] J. Dy and C. Brodley, “Feature subset selection and order identifi-
cation for unsupervised learning,” in Proc. 17th Int. Conf. Mach.
Learn., 2000, pp. 247–254.

[39] X. He, D. Cai, and P. Niyogi, “Laplacian score for feature
selection,” in Proc. Adv. Neural Inf. Process. Syst., pp. 507–514, 2005.

[40] Z. Zhao and H. Liu, “Spectral feature selection for supervised and
unsupervised learning,” in Proc. 24th Int. Conf. Mach. Learn., 2007,
pp. 1151–1157.

[41] Y. Yang, H. Shen, Z. Ma, Z. Huang, and X. Zhou, “l2;1-norm regu-
larized discriminative feature selection for unsupervised
learning,” in Proc. 22th Int. Joint Conf. Artif. Intell., 2011, pp. 1589–
1594.

[42] J. Duchi and Y. Singer, “Efficient online and batch learning using
forward backward splitting,” J. Mach. Learn. Res., vol. 10,
pp. 2899–2934, 2009.

[43] K. Glocer, D. Eads, and J. Theiler, “Online feature selection for
pixel classification,” in Proc. 22th Int. Conf. Mach. Learn., 2005,
pp. 249–256.

[44] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge:
Cambridge Univ. Press, 2004.

[45] C.-C. Chang and C.-J. Lin, “LIBSVM : A library for support
vector machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 27,
pp. 1–27, 2011.

[46] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Identifying suspi-
cious URLs: An application of large-scale online learning,” Proc.
26th Int. Conf. Mach. Learn., 2009, pp. 681–688.

[47] J. A. Sez, M. Galar, J. Luengo, and F. Herrera, “Analyzing the pres-
ence of noise in multi-class problems: Alleviating its influence
with the one-vs-one decomposition,” Knowl. Inform. Syst., vol. 38,
no. 1, pp. 179–206, 2014.

[48] V. Boln-Canedo, N. Snchez-Maroo, and A. Alonso-Betanzos,
“Feature selection and classification in multiple class datasets:
An application to KDD cup 99 dataset,” Expert Syst. Appl., vol. 38,
no. 5, pp. 5947–5957, 2011.

[49] I. Triguero, S. Garca, and F. Herrera, “Self-labeled techniques for
semi-supervised learning: Taxonomy, software and empirical
study,” Knowl. Inform. Syst., vol. 42, no. 2, pp. 245–284, 2015.

[50] G. Yu, G. Zhang, Z. Zhang, Z. Yu, and L. Deng, “Semi-supervised
classification based on subspace sparse representation,” Knowl.
Inform. Syst., vol. 43, no. 1, pp. 81–101, 2015.

Qin Zhang received her Master’s degree from
the University of Chinese Academy of Sciences,
China, in July 2014. She is currently working
toward the PhD degree in the Centre for
Quantum Computation and Intelligent Systems,
University of Technology Sydney, Australia. Her
main research interests include data mining
and online learning. She has served as a
reviewer (sub-reviewer) for KDD-15, ICDM-15,
IJCAI-15, AAAI-15, and NIPS-15.

Peng Zhang received his PhD degree from the
University of the Chinese Academy of Sciences
in July 2009. Since then, he has been with the
national engineering laboratory at the Chinese
Academy of Sciences and two universities in the
USA. In January 2014, he joined the QCIS
research center, University of Technology Syd-
ney, as a lecturer. He is an associate editor of
two Springer journals, Journal of Big Data and
Annals of Data Science. To date, he has pub-
lished more than 100 research papers in data

mining, including in IEEE Transactions on Knowledge and Data Engi-
neering, KDD, ICDM, SDM, IJCAI, AAAI, CIKM, WWW, and PAKDD. He
serves as a PC member (reviewer) for IEEE Transactions on Knowledge
and Data Engineering, ACM Transactions on Knowledge Discovery from
Data, KDD, ICDM, IJCAI, AAAI, NIPS, and more. He received the Best
Paper Award at ICCS-14 (ERA Rank A) which was held in Queensland,
Australia.

Guodong Long received his PhD degree from
the University of Technology Sydney (UTS), Aus-
tralia, in 2014. He is a research associate at the
Centre for Quantum Computation and Intelligent
Systems, UTS, Australia. His research focuses on
datamining and social network analysis.

Wei Ding received her PhD degree in computer
science from the University of Houston in 2008.
She is an associate professor of computer sci-
ence at the University of Massachusetts Boston.
Her research interests include data mining,
machine learning, artificial intelligence, computa-
tional semantics, with applications to astronomy,
geosciences, and environmental sciences. She
has published more than 100 referred research
papers, one book and has two patents. She is
an associate editor of Knowledge and Informa-

tion Systems (KAIS) and an editorial board member of the Journal of
Information System Education (JISE), the Journal of Big Data, and the
Social Network Analysis and Mining Journal. She is a senior member
of the IEEE and ACM.

2722 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 10, OCTOBER 2016



Chengqi Zhang received the PhD degree from
the University of Queensland, Brisbane, Aus-
tralia, in 1991 and the DSc degree (higher doctor-
ate) from Deakin University, Geelong, Australia,
in 2002. Since December 2001, he has been a
professor of information technology with the Uni-
versity of Technology Sydney (UTS), Australia,
where he has been the director of the UTS Prior-
ity Investment Research Centre for Quantum
Computation and Intelligent Systems since April
2008. Since November 2005, he has been the

chairman of the Australian Computer Society National Committee for
Artificial Intelligence. He has published more than 200 research papers,
including several in first-class international journals, such as Artificial
Intelligence, and IEEE and ACM Transactions. He has published six
monographs and edited 16 books, and has attracted 11 Australian
Research Council grants. His research interests mainly focus on data
mining and its applications. He has served as an associate editor for
three international journals, including IEEE Transactions on Knowledge
and Data Engineering (2005-2008); and has served as a general chair,
program committee chair, or organizing chair for five international con-
ferences including ICDM 2010 and WI/IAT 2008. He was also general
co-chair of KDD 2015 in Sydney and is the Local Arrangements chair of
IJCAI-2017 in Melbourne. He is a fellow of the Australian Computer
Society and a senior member of the IEEE.

Xindong Wu received the PhD degree in artificial
intelligence from the University of Edinburgh,
Scotland. He is a Yangtze River scholar in the
School of Computer Science and Information
Engineering, Hefei University of Technology,
China, and a professor of computer science at
the University of Vermont. His research interests
include data mining and knowledge-based sys-
tems. He is the steering committee chair of the
IEEE International Conference on Data Mining,
and the Editor-in-Chief of Knowledge and Infor-

mation Systems. He is a fellow of the IEEE and AAAS.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHANG ET AL.: ONLINE LEARNING FROM TRAPEZOIDAL DATA STREAMS 2723



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


