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Abstract—Interpretability has become a major criterion for de-
signing predictive models in climate science. High interpretability
can provide qualitative understanding between the meteorological
variables and the climate phenomena which is helpful for climate
scientists to learn causes of climate events. However, detecting the
features which have efficient interpretability to observed events
is challenging in spatio-temporal climate data because the key
features may be overlooked by the redundancy due to the high
degree of spatial and temporal correlations among the features,
especially in high dimensionality. Furthermore, climate events
occurred in different regions or different times may have different
explanatory patterns, detecting explanations for overall climate
phenomena is also difficult. Here we propose Galaxy, a new
interpretable predictive model. Galaxy allows us to represent
the explanatory patterns of subpopulations within an overall
population of the target. Each explanatory pattern is defined
by the smallest feature subset that the conditional distribution
of target actually depends on, which we define as the minimal
target explanation. Based on the detection of such explanatory
patterns, Galaxy can detect the Galaxy space, the explanations
for the overall target population, by sequentially detecting target
explanation of every individual subpopulation of the target, and
then forecast the target variable by their ensemble predictive
power. We validate our approach by comparing Galaxy to several
state-of-the-art baselines in a set of comparative experiments and
then evaluate how Galaxy can be used to identify the explanatory
space and give a referential explanation report in a real-world
scenario on a given location in the United States.

Keywords-Interpretable explanation, Long-lead rainfall fore-
casting, AdaBoost

I. INTRODUCTION

With a rapid increase in the availability of spatio-temporal

climate data and growing popularity of data mining techniques

[1], qualitative understanding between the meteorological vari-

ables and the climate phenomena has become a major objective

of current meteorology. This makes interpretability has a great

need in the design of predictive models.

However, the climate data is always high-dimensional and

spatio-temporal correlated, and so the relationships among the

meteorological variables are very complicated - especially in

spatial-temporal studies of numerous variables simultaneously

[2], [3]. With time and space increasing, the number of ele-

ments potentially contributing to a meteorological event grows

sharply. This makes identifying the causes of climate phenom-

ena from large spatial-temporal scale meteorological features

extremely difficult. For example, explaining phenomena 5 days

ahead is typically less reliable than explaining phenomena

for the next day. This occurs since small changes may likely

influence observed weather events as time advances (butterfly

effect), but such small changes can be easily overlooked due

to the high degree of spatial and temporal correlations among

the features as their magnitude decreases, so it is difficult to

analyze how a multitude of tiny events will impact observed

weather as time moves forward.

On the other hand, climate phenomena are the result of the

interactions and operations of atmospheric physical effects on

multiple spatial-temporal scales. This means the climate events

occurred in different regions or different times may have

different explanatory patterns. For example, compared with

precipitation during the cold season, warm season precipitation

generally occurs on smaller spatial-temporal scales with large

gradients in precipitation amounts. We cannot use the same

meteorological features’ influence to explain all precipitation

events. Thus identifying explanatory patterns in all perspective

are of significant interest for understanding the causes of
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Fig. 1. An example of Galaxy for precipitation forecasting. Galaxy detects the Galaxy space, the explanations for overall target population, by sequentially
detecting minimal target explanation of every individual subpopulation within the overall population, and then forecasting target by their ensemble predictive
power.

climate phenomena.

In this paper, we propose a new interpretable predictive

model Galaxy (Figure 1) which can detect explanatory patterns

in all perspective of target climate phenomena from large

spatial-temporal scale meteorological features and forecast by

their ensemble predictive power. Our work is not only able

to give interpretable explanations on high-dimensional spatio-

temporal climate data, but also provide the preconditions for

scientists for further studies. Thus, our main contributions are

as follows:

• Minimal Target Explanation: We define the notion of

minimal target explanation to represent the explanation

that locally faithful to the target instances derived from

the same subpopulation.

• Galaxy Space: We define the notion of Galaxy space to

represent the explanation with global faithfulness of the

overall population of the target feature.

• Galaxy: We design and implement the Galaxy algorithm,

to discover the Galaxy space from mixture distributed

feature data, and then forecast by its ensemble predic-

tive power. In our empirical experiments, our algorithm

outperforms state-of-the-art ensemble methods under di-

mensional feature space.

• Interpretable on Real-world scenario: We apply

Galaxy to study historical precipitation data in the

Des Moines river basin. Our empirical study includes

5,313,600 features over 67 years of data. We are able

to understand precipitation forecasting in the area.

The rest of this paper is organized as follows. Section II

reviews related work. Section III presents the Galaxy space,

Galaxy detection algorithms, and as theoretical analysis of

Galaxy. Section IV discusses our empirical studies on synthetic

data and a real-world precipitation data set, and showcase the

explanatory patterns. We conclude the paper in section V.

II. RELATED WORK

To provide high-quality explanations for observed weather

events, we need to look for the features which are most

likely to influence them. However, the high-dimensionality

and high degree of spatio-temporal correlations are serious

challenges of climate data. Although the existing dimension

reduction methods are able to address the high dimensionality

by reporting a subset of features which are strongly contribute

on prediction, detecting the features most influent on observed

weather events is still facing the following challenges.

• Scale amplification: Weather systems are very sensitive to

changes in initial conditions. So many small perturbations
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in air motion could compound to result in large changes

over longer time frames.

• Error magnification and analysis: Because the system is

so sensitive, measurement error in monitoring devices can

lead to errors in analysis.

Markov boundary based feature selection is the state-of-the-

art dimension reduction technology using causal inference [4]

[5] [6] [7], and a Markov boundary of the target feature can

be tread as the knowledge needed to predict the behavior of

the target. However, a unique Markov boundary ideally exists

for targets in datasets under a strong faithfulness assumption

[8] [9] [10], which is often violated in real-world data because

of the occurrence of hidden variables, hypothesis test errors

and some fake relevance of pure chances, so multiple Markov

boundaries exist almost in all situations [11]. Which one can

best explain observed weather events remains an open research

problem.
On the other hand, the climate phenomena are the result

of the interactions and operations of atmospheric physical ef-

fects on multiple spatial-temporal scales, the observed climate

events are likely derived from mixture populations, which the

climate events occurred in different regions or different times

may derived from different subpopulations [12]. This makes

one pattern may not be interpretable to all observed climate

events. We are interested in how to detect the explanations for

climate events of the mixture populations.
In this paper, we discuss a new predictive model with

high interpretability to facilitate climate scientists to better

understand causes of climate events.

III. GALAXY SPACE

A. Notation
For the remainder of this paper, we shall use:

• an italic lowercase letter to denote an instance (e.g. x).

• an italic capital Greek letter to denote a feature (e.g. X).

• a boldface, capital Greek letter to denote a feature set

(e.g. X = (X1, ..., Xk) ∈ R
k).

• a backslash to denote difference between feature sets.

(e.g. X\{Xi} = {X1, ..., Xi−1, Xi+1, ..., Xk}).
• D to denote a data set.

• Y to denote the target feature.

• P to denote a probability distribution.

B. Galaxy Space
The Galaxy space is designed for global faithfulness and

efficient interpretability. Formally, suppose we have a dataset

D that includes n instances. Each of the instance is in the form

of (X, Y ), where X = (X1, ..., Xk) ∈ R
k and Y ∈ R, and

the n instances of Y are derived from m subpopulations. Then

the overall conditional distribution of Y can be represented as

the mixture of subpopulation conditional distributions:

P (Y | X) =

m∑
i=1

φiPi(Y | X), (1)

where φ is the mixture component weight, Pi(Y | X)
presents the conditional probability distribution of Y of the

ith subpopulation, and P (Y | X) is the overall conditional

population distribution of Y .

Definition 1. Target Explanation (TE): A feature set M ⊆ X
is said to be a target explanation of P (Y | X) if and only if:

P (Y | X) = P (Y |M) (2)

By Definition 1, a non-minimal target explanation can be

trivially produced by adding redundant or irrelevant features

into itself. Only minimal target explanations are of interest in

this paper. If a feature subset M ⊆ X is a minimal target

explanation, it is more efficiently than X to interpret the

instances derived from P (Y | X).

Definition 2. Minimal Target Explanation (MTE): A target
explanation M is said to be a minimal target explanation if
and only if no proper subset of M satisfies the definition of
target explanation.

Since a MTE of P (Y | X) is the minimal explanation

of P (Y | X), it does not have any redundant or irrelevant

feature. Then back to the mixture conditional distributions

representation, we define partial target explanation as follows.

Definition 3. Partial Target Explanation (PTE): If P (Y | X)
can be represented as mixture of subpopulation conditional
distributions

∑m
i=1 φiPi(Y | X), then we say a target explana-

tion of Pi(Y | X) is a partial target explanation of P (Y | X).

We also define a MTE of Pi(Y | X) as a partial minimal

target explanation (PMTE) of P (Y | X). Then, we say PMTE
is locally faithful, i.e. it is efficiently interpretable to the

instances derived from a subpopulation of Y . Thus, for the

overall population of Y , we define the Galaxy space of Y as

follows.

Definition 4. Galaxy Space G: If P (Y | X) can be repre-
sented as mixture of subpopulation conditional distributions∑m

i=1 φiPi(Y | X), then we say
∏m

i Mi is a Galaxy space G

of Y if and only if every Mi corresponds a MTE of Pi(Y | X).

Based on the Definition 4, a Galaxy space G of Y is a set of

PMTEs of P (Y | X). Each PMTE provides a local partical

minimal target explanation, and the complete set of PMTE
is able to interpret the entire instances of Y , i.e. globally
faithful. In order to look for a Galaxy space, we need to first

detect PMTE.

C. Partial Minimal Target Explanation (PMTE) Detection

Detecting a PMTE of P (Y | X) is to look for the “smallest”

explanation that is locally faithful to a subpopulation of Y .

Here we can further decompose it into two problems: (1)

Detecting the “smallest” explanation MTE of a subpopulation

of Y and (2) Identifying the instances from D which belong

to this subpopulation.

To address the first problem, we utilize the approaches in

causal inference. In the domain of causal discovery, a Bayesian

network [8] is a standard tool for modeling the conditional

dependencies of the features, and a Markov boundary of a
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Algorithm 1: Partial Minimal Target Explanation (PMTE) Detection.

Input:
• data set D for features X; target feature Y ; Markov boundary detection algorithm fY ; learning algorithm hY ;

performance metric T;

Output:
• M, a partial minimal target explanation of Y .

• hY (M), a trained learning algorithm on M.

begin
M′

init = empty /* Initialize new Markov boundary with an empty set */
M′, R = fY (M

′
init,X) /* Detect 1st Markov boundary M’ and residual features R from

X on D */
M = M′

Performance = ThY (M′)
for ∀S ⊂M′ do

Rnew = R
M′

init = M′\S /* Initialize new Markov boundary as M′\S */
repeat

M′
new, Rnew = fY (M

′
init, Rnew) /* Replacing S by exploring its equivalent features

from Rnew */
if ThY (M′

new) > Performance then
M = M′

new

Performance = ThY (M′
new)

until Rnew is empty

Return M, hY (M)

target feature corresponds to a local causal neighborhood of

it and consists of all its direct causes, effects, and causes of

the direct effects. This means that knowledge of the values of

the Markov boundary features should render all other features

superfluous for predicting Y [13]. In faithful joint distributions

of (X, Y ), there exists a unique Markov boundary of Y
[14]. However, in real-world data, the faithfulness condition

may be violated by hidden variables, hypothesis test errors

and some fake relevance of pure chances. This makes the

Markov boundaries of the target variable not unique [11]. In

order to define a unique minimal target explanation, we first

state the definition of optimal predictor and link it with the

concept of target explanation, then we detect the minimal

target explanation using optimal predictor on the Markov

boundaries of the target feature.

Definition 5. Optimal Predictor [11]: Given a data set D, a
learning algorithm hY , and a performance metric T to assess
the learner’s model, a feature subset M ⊆ X is an optimal
predictor of Y if it maximizes the performance metric T for
predicting Y using learner hY in the data set D.

The following theorem states the link between the optimal

predictor and the target explanation.

Theorem 1. If a conditional probability distribution P (Y |
X) can be estimated accurately by maximizing a performance
metric T on a learning algorithm hY , then M ⊆ X is a
target explanation of P (Y | X) if and only if it is an optimal

predictor of P (Y | X).

Proof of Theorem 1:
1. Prove a TE of P (Y | X) is an optimal predictor of

P (Y | X): If M ⊆ X is a target explanation of P (Y | X),
then P (Y | X) = P (Y | M) and this implies that T will

be maximized on learning algorithm hY , therefore, M is an

optimal predictor of P (Y | X).
2. Prove an optimal predictor of P (Y | X) is a TE of P (Y |

X): Suppose M ⊆ X is an optimal predictor of P (Y | X) but

it is not a target explanation, so P (Y | X) �= P (Y |M), and

this implies ThY (M) > ThY (X). By Definition 1, X is always a

target explanation, thus it is also an optimal predictor of P (Y |
X). Therefore, the following should hold: ThY (M) = ThY (X).

This is contradiction. Therefore, M is a target explanation.

By the Definition 1 and Theorem 1, we get Corollary 3.7 to

address the second problem of Identifying the instances from

D which belong to this subpopulation.

Corollary 1. If conditional probability distribution can be
estimated accurately by maximizing a performance metric T
on a learning algorithm hY , then the instances predicted
correctly by hY are derived from the same distribution.

Now we can use Theorem 1 as the criterion for detecting

the MTE of Pi(Y | X).

Mi = argmax
M′∈fY (X)

ThY (M′)

s.t. Pi(Y | X) = hY (Mi)
(3)
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Algorithm 2: The Galaxy algorithm, to discover the Galaxy space from mixture distributed feature data and forecast via

its ensemble predictive power.

Input:
• data set D includes n instances; target feature Y ; Markov boundary detection algorithm fY ; learning algorithm hY ;

performance metric T;

Output:
• Galaxy space G.

• Galaxy HY , an trained ensemble algorithm.

begin
G = empty /* Initialize G with an empty set */
W =

∏n
j=1 wj , where wj =

1
n /* Initialize the instances’ weights W using uniform

distribution */
I(hY (xj), yj) /* Predicting error of the instance (xj , yj), where I = 0 if the prediction
is correct, otherwise 1 */
i = 1
repeat

Mi, hY (Mi) = PMTE Detection(D, Y , fY , hY , T )

ε =

∑n
j=1 wjI(hY (xj), yj)∑n

j=1 wj
/* computer the weighted misclassification rate ε. */

φi = log
(
1−ε
ε

)
/* computer the mixture component weight φ. */

for wj ∈W do
wj = wj exp(εI(hY (xj), yj)) /* strengthen the misclassified instances. */

i = i+ 1
until ε < δ
Return G =

∏
i Mi, HY =

∑
i φihY (Mi)

Fig. 2. Multiple Markov boundaries detection via equivalent information
exploration. A, B, C, D are Markov boundaries of Y in a Bayesian network.
A is the Markov boundary detected from the original feature space. B, C,
D are Markov boundaries generated by replacing part of features in A by
equivalent features explored from the residuals.

Here fY : R
k → R

d is a Markov boundaries detection

algorithm, d ≤ k, hY : Rd → R is a learning algorithm for

predicting Y , and T is a performance metric to assess hY

(the bigger the value, the better the performance). For fY ,

we utilize the idea mentioned in [11], which firstly detects a

Markov boundary M from X, and then tries to replace part

of M by its equivalent feature sets explored from the residual

features. Finally a PMTE of P (Y |M), which is the MTE of

Pi(Y |M), can be detected by choosing the optimal Markov

boundary Mi which maximizes the performance metric T for

predicting Y using learner hY . The detail is illustrated in Fig

2 and Algorithm 1.

D. Galaxy Space Detection

The probability distribution of Y in the overall population is

represented as a mixture distribution, then detecting the Galaxy

space of Y is actually looking for the explanations which

globally faithful to the mixture distribution of Y . It can be

implemented by detecting every subpopulation’s MTE in the

mixture distribution of Y via Theorem 1. Since every PMTE
in the Galaxy space is locally faithful to a subpopulation of

Y , the overall explanation of Y can be represented as the

ensemble of the Galaxy space. Thus, we give the definition of

Galaxy predictor and then link it with the concept of Galaxy

space.

Definition 6. Galaxy Predictor: Given a data set D, we say a
family of feature subsets

∏m
i Mi, where Mi ⊆ X, is a Galaxy

predictor of Y if it maximizes the performance metric T for
predicting Y using an ensemble learning algorithm HY .

We call the ensemble learning algorithm HY on Galaxy

predictor as Galaxy. The following theorem provides the link

between the Galaxy predictor and the Galaxy space.
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TABLE I
AVERAGE F-MEASURE ON DIFFERENT DIMENSIONAL SYNTHETIC DATASETS.

Classifier

Dimensionality
450 550 650 750 850 950 1050 1150 1250 1350

Random Forest 0.812 0.777 0.761 0.671 0.707 0.672 0.776 0.753 0.662 0.764

AdaBoost 0.794 0.786 0.755 0.643 0.701 0.587 0.773 0.733 0.591 0.734

Gradient Boosting 0.791 0.842 0.792 0.716 0.691 0.612 0.781 0.744 0.652 0.758

Multilayer Perceptron 0.819 0.845 0.832 0.703 0.706 0.711 0.726 0.742 0.643 0.802

Galaxy(our method) 0.82 0.847 0.841 0.714 0.723 0.803 0.772 0.804 0.683 0.824

Theorem 2. A family of feature subsets
∏m

i Mi, where Mi ⊆
X, is a Galaxy space of Y if and only if it is an Galaxy
predictor of Y .

Proof of Theorem 2:
1. Prove a Galaxy space of Y is a Galaxy predictor of Y :

If a family of feature subsets
∏m

i Mi, where Mi ⊆ X,

is a Galaxy space of Y , then by Definition 4, every Mi

corresponds a PMTE of Pi(Y | X) in
∑m

i=1 φiPi(Y | X).
This implies that Mi is an optimal predictor of Pi(Y | X) by

maximizing the performance metric T on a learning algorithm

hY . Therefore,
∏m

i Mi is a Galaxy predictor and Galaxy is

presented as HY =
∑m

i=1 φihY (Mi).
2. Prove a Galaxy predictor of Y is a Galaxy space of Y :

Suppose
∏m

i Mi is a Galaxy predictor of Y , but it is not

a Galaxy space of Y and Galaxy is presented as HY =∑m
i=1 φihY (Mi), so there is at least one Mj ∈

∏m
i Mi is not

a PMTE. This implies that Mj is not an optimal predictor. so

there exist an optimal predictor to make the performance of

Galaxy better. This is contradict to that
∏m

i Mi is a Galaxy

predictor. Therefore
∏m

i Mi is a Galaxy space of Y .

Based on Theorem 2 and Definition 6, we can detect a

Galaxy space of Y via Galaxy, a variant of AdaBoost, as

follows.

• Step 1. Detect a PMTE via Theorem 1 on weighted

instances in D and then calculate the misclassification

rate ε.
• Step 2. Compute mixture component weight.

φi = log

(
1− ε

ε

)
. (4)

• Step 3. Strengthen the misclassified instances by re-

weighting the misclassified instances.

wj = wje
εI(hY (xj),yj). (5)

where wj is the weight of the instance (xj , yj), I is the

predicting error of (xj , yj), where I = 0 if the prediction

is correct, otherwise 1.

• Repeat steps 1 - 3 until the misclassification rate ε lower

than a threshold δ.

The Galaxy algorithm, to discover the Galaxy space from

mixture distributed feature data, is explained in pseudo-code

in Algorithm 2.

IV. EXPERIMENTAL EVALUATION

In this section, we present experiments to evaluate the effec-

tiveness and utility of explanations of Galaxy on synthetic data

with different dimensionalities and a real-world precipitation

data set. In particular, we address the following questions:

• Q1. Effectiveness on highly correlated data: How

effective can Galaxy work on highly correlated data?

• Q2. Interpretation of target explanations: Are the

target explanations detected by Galaxy on real-world data

interpretable?

We implemented Galaxy in Python; all experiments were

carried out on a 3.0 GHz Intel(R) Xeon(R) E5-2687 Linux

server, 1007 GB RAM, running Ubuntu 16.04.2 LTS.

A. Synthetic data generation

In order to simulate highly correlated data that represent

data collected in real-world climate applications, we generate

a d-dimensional synthetic data set using classification data

generator in Python package scikit-learn [15] with high re-

dundancy and noise.

B. Experiment settings

We demonstrate the effectiveness of Galaxy by comparing

its F-measure( 2×precision×recall
precision+recall

) against a bench of candidate

methods: Random Forest, AdaBoost, Gradient Boosting, and

multilayer perceptron. Simulated data were generated with

feature counts d ranging from 450 to 1,350 in increments

of 100 features. Each of the comparison methods was run

against each of the subsets of the overall dataset after feature

reduction. All computations were performed on the same

hardware and datasets.

C. Q1. Effectiveness on highly correlated data

We report the F-measure for each classifier on the different-

dimensional datasets, averaged by 10-fold cross-validation, in

Table I. We can see that Galaxy outperforms others most often

(8 wins, 2 losses). These results indicate that Galaxy achieve

the satisfying predictive power while detecting the Galaxy

space.

D. The Precipitation Data Set

The real-world dataset we used for the experiments is a

subset of the NCEP/NCAR Reanalysis dataset [16] and in-

cludes 9 meteorological variables collected at different vertical

levels in the atmosphere (Table II). All the variables are

chosen by our domain scientists collaborators based on their

physical relevance for precipitation analysis. By convention,

atmospheric pressure (in units of hectopascals or hPa) is used

as the vertical coordinate with the 1000hPa surface located
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Fig. 3. Four PMTEs of the precipitation at Des Moines river basin detected by Galaxy.

TABLE II
METEOROLOGICAL VARIABLES.

Name Level(hPa)

Zonal Wind 200, 500, 850

Meridional Wind 200, 500, 850

Geopotential Height 200, 500, 850

Temperature 200, 500, 850

Relative Humidity 700, 925

Specific Humidity 850

Pressure Vertical Velocity 700

Sea Level Pressure -

Precipitable Water -

near the surface and 200hPa near the top of the troposphere.

According to the theory of quasi-geostrophic and baroclinic

[17], we specially choose 200hPa, 500hPa, and 850hPa zonal

winds(i.e. east-west) because they are a proxy for the location

and strength of the jet stream which requires wind shear

(strong change in wind speed with height) to develop. And

the information of the location of the jet stream exhibits per-

sistence on scales much longer than individual storm events.

Moreover, 200hPa, 500hPa, and 850hPa meridional (i.e. North-

South) winds are chosen because they are extremely important

for the transport of heat and moisture from the tropics into

the mid-latitudes. The geopotential height at 200hPa, 500hPa,

and 850hPa are chosen because the 500hPa field will contain

information about Rossby wave propagation, which is a natural

phenomenon in the atmosphere and oceans of planets that

largely owe their properties to rotation, and the comparison

with 200hPa and 850hPa fields allows us to infer where large-

scale rising motion (and therefore precipitation) is likely to

take place. On the other hand, the temperature at 200hPa,

500hPa, and 850hPa are chosen because the moisture transport

is needed to maintain the precipitation while the advection of

temperature is crucial for strengthening (weakening) tempera-

ture gradients and the production (destruction) of fronts, which

are important in producing vertical (i.e. rising) motion. And

specific humidity at 850hPa, relative humidity at 700hPa and

925hPa are chosen because the amount of water in the upper

troposphere was thought to be negligible. The pressure verti-

cal velocity at 700hPa, precipitable water (total water vapor

integrated from the surface to the top of the atmosphere) and

sea level pressure (atmospheric pressure at surface corrected

to sea level) are also important in producing precipitation.

The total number of variables in all levels is 18. All these

meteorological variables are sampled at the spatial domain of

0◦E to 375.5◦E and 90◦N to 20◦S with a resolution of 2.5◦×
2.5◦ (totally 5,904 locations) and a daily temporal resolution.

We pick the samples collected during the rainy season (March

to November) during the years 1951-2017. The target feature

is the historical spatial average precipitation (the mean of daily

precipitation totals from 23 stations) of the Des Moines River

basin in Iowa from the same time period.

In the experiments, We set the lead time as 5 days, “look

ahead period as 10 days. For example, to explain rainfall

situations at today (Day0) in the study area, we will look for

the explanatory features in the time period from Day−14(14

days ago) to Day−5(five day ago). The precipitation data set

presents two particularly difficult characteristics:

• Extremely high dimensionality: Each sample has

5, 313, 600 features (18 variables × 5,904 locations ×
10 days)

• High intra-dataset correlation: Meteorological vari-

ables presented at different levels, locations, and days

are highly correlated. Different meteorological variables

may also correlated.
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E. Q2. Interpretation of target explanations

We run Galaxy on this extremely high dimensionality data

set and finally got 15 PMTEs, which the minimum size is 4,

the maximum size is 13. The top four weighted PMTEs are

illustrated in Figure 3.

The PMTEs in Figure 3 (A) and Figure 3 (D) identifies

a geopotential height anomaly over Eastern Europe at 11

days before. This is consistent with a deepening trough over

Ural Mountains. Troughs deepening over the Urals are often

triggers of wave trains across Asia (the so-called Silk Road

pattern) that eventually end up propagating across the Pacific.

The PMTE in Figure 3 (B) includes meridional wind,

specific humidity, and upper level (200hPa) geopotential height

fields near the east coast of Asia. Many studies have identified

cold surges along the Asian coast as important precursors to

surface weather over the United States [18], [19]. The surge of

cold air and deepening trough typically result in a strengthened

jet stream and generate a Rossby wave that propagates across

the North Pacific and breaks along the west coast of North

America. The mechanism implied by the PMTE is that

the North-South winds are transporting dry (and presumably

cold) air from the north into the middle latitudes around

Japan. This pattern results in the deepening of an upper-level

trough (negative anomaly in the 200hPa Geopotential Height

field) and strengthening of the mid-latitude jet stream. The

strengthening of the jet stream in the PMTE (i.e. an upper

level zonal (u) wind field being chose) was not observed, but

it is implied. The upper-level geopotential height anomalies

along the west coast of North America on day -5 imply a

large, pre-existing upper-level ridge along the west coast of

North America [20], [21] that is also very consistent with

expectations of strong precipitation over the central U.S. This

pattern suggests a “forcing” for a wave train setting up along

the east coast and a pre-existing ridge along the west coast.

V. CONCLUSIONS

We propose a new interpretable predictive model Galaxy

that can represent efficient explanations of subpopulations

within an overall population of the target feature, and forecast

target by their ensemble predictive power. We provide a

theoretical framework and implementation details of Galaxy.

Our empirical study on the synthetic and real data demon-

strate the superb performance of Galaxy on predication and

interpretation.
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