
REVISED PROOF

Appl Intell
DOI 10.1007/s10489-016-0762-6

Rapid building detection using machine learning

Joseph Paul Cohen1 · Wei Ding1 · Caitlin Kuhlman1 · Aijun Chen2 · Liping Di2

© Springer Science+Business Media New York 2016

Abstract This work describes algorithms for performing
discrete object detection, specifically in the case of build-
ings, where usually only low quality RGB-only geospatial
reflective imagery is available. We utilize new candidate
search and feature extraction techniques to reduce the prob-
lem to a machine learning (ML) classification task. Here we
can harness the complex patterns of contrast features con-
tained in training data to establish a model of buildings.
We avoid costly sliding windows to generate candidates;
instead we innovatively stitch together well known image
processing techniques to produce candidates for building
detection that cover 80–85 % of buildings. Reducing the
number of possible candidates is important due to the scale
of the problem. Each candidate is subjected to classification
which, although linear, costs time and prohibits large scale
evaluation. We propose a candidate alignment algorithm to
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boost classification performance to 80–90 % precision with
a linear time algorithm and show it has negligible cost. Also,
we propose a new concept called a Permutable Haar Mesh
(PHM) which we use to form and traverse a search space
to recover candidate buildings which were lost in the ini-
tial preprocessing phase. All code and datasets from this
paper are made available online (http://kdl.cs.umb.edu/w/
datasets/).

Keywords Building detection · Machine learning ·
Geospatial reflective imagery · Discrete object detection

1 Introduction

Rapid detection and classification of discrete objects such
as buildings in geospatial imagery has many applications
such as damage assessments by comparing before and after
building detections [5, 10, 27]. Large scale change detection
at an object level can enable computer assisted updating of
maps by identifying new or removed objects between mul-
tiyear satellite imagery [3]. This could also allow for the
next evolution of the USGS National Land Cover Database
(NLCD) analysis [29]. Also, in a national security interest
and in the funding motivation of this research, ontological
analysis can be performed using the spatial arrangement of
groups of buildings to identify large manufacturing, power
generation, and weapons proliferation sites.

Problems restrict the usage of existing research which
require camera alignment information (azimuth and zenith
angles) and/or special equipment that captures near-infrared
channels. Runtime is also a large factor which restricts the
scale of deployment. In this work we present a combina-
tion of methods which have minimum imagery requirements
(they work on common grayscale imagery) and provides
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scale and rotation invariant detection with a relatively
inexpensive computation.

The first contribution of this paper is our method does not
depend on sliding windows to generate building candidates
(Section 2.1). Building candidates are rectangles, identified
by a center, height, width, and rotation, that likely contain
a building. If these were generated using a brute force slid-
ing window approach processing an image would be very
expensive because the centers can be any pixel, the width
and height can be any combination (non-overlapping), and
the rotation can be between 0◦ − 180◦. We devise a linear
time strategy utilizing building shadows as a major feature
because they are high contrast straight ‘L’ shaped feature
unique to man made objects [13, 15, 16].

The second contribution is how we align buildings in lin-
ear time to increase classification accuracy (Section 2.2).
We utilize a summation of Gaussians each centered and
scaled depending on the direction and magnitude of the vec-
tors that form the contour around a building. We describe a
linear time algorithm for computing this and show it has a
negligible cost as well as a significant performance gain of
up to 5 % accuracy.

The third contribution is our candidate Permutable Haar
Mesh (PHM) search method that heuristically searches
nearby candidate boxes to find buildings via a greedy graph
search algorithm (Section 2.4). Because we utilize Haar
contrast features [26] for their supreme performance; if our
building candidate box does not properly cover the build-
ing it will not be considered a building because its feature
distributions won’t align to learned examples. The PHM
approach is expensive and is not part of our rapid solu-
tion but can be employed to increase accuracy if it is really
necessary.

2 Method

An overview of our method is shown in Fig. 1. First (in
Fig. 1a) Canny edge detection is run using a range of thresh-
old values. The Canny edge detection [6], a fast straight-
forward method, uses high and low thresholds to determine
edges and using only one set of threshold values would not
discover all buildings (Discussed in Section 2.1). Instead,
all possible combinations of threshold values are used lim-
ited by a step size between the values. The resulting binary
images are processed for contours (Fig. 1b) in linear time
[7]. Each contour is considered a candidate. Some of the
resulting contours are filtered out based on a minimum num-
ber of pixels that can be used for prediction and if they are
redundant to other contours by only differing by less than 5
pixels.

These contours have their alignment (Fig. 1c) detected
automatically (Note: in the figure a different building is

used to illustrate this). Section 2.2 discusses the rotation
method. The candidates are then automatically rotated to a
standard alignment, scaled to a standard size, and converted
to grayscale for Haar feature extraction (Fig. 1d). This rota-
tion is so the Haar features will have more correlation when
a model is built.

For every candidate, Haar features are extracted from
fixed locations to capture contrast (Fig. 1e). Haar features
have been successful and proved rapid and robust by [26].
To extract a Haar feature, a rectangle is first overlaid at a
specific and consistent location on the image. The rectangle
is split in half and the pixels inside each half are summed
and subtracted from each other. The resulting value repre-
sents the contrast at that location in the image and can be
compared to other images. Combinations of these features
will be discriminative enough to build a model (Fig. 1f).
This model can then be used to predictions when given
unseen Haar feature values from a new test image.

To complement this method we present an optional step
(due to computational cost) which is a novel candidate per-
mutation method called a Permutable Haar Mesh (PHM)
to increase recall of candidates via greedy graph search
(Section 2.4). Recall is an evaluation metric representing
how many buildings have not been missed, this metric is
complementary to precision which represents how correct
each prediction is. Candidates are surrounded by a bound-
ing box and permuted by moving their top, bottom, left,
and right boundaries in order to properly cover a candi-
date and capture buildings that would otherwise have been
missed because the candidate didn’t properly cover the
building.

2.1 Candidate generation

We utilize building shadows as a major identifier of build-
ings because they are a high contrast feature which provides
largely straight ‘L’ shaped contours unique to manmade
objects [13, 15, 16]. Canny edge detection [6] is still the
state of the art edge detection method that can capture these
shadows well. The result of Canny edge detection is a binary
image representing the edges of the input. Candidates are
isolated by applying a linear time contour generation algo-
rithm [7] which groups together edge pixels and returns a
set of vectors that trace along these edges forming a contour.
Each contour is considered to be a candidate building, we
will also call the derived forms of this contour a candidate
such as a bounding box around the contour and the image
pixels within this bounding box.

Canny edge detection has two hyperparameters, a high
and low threshold for hysteresis thresholding. Canny edge
detection works by first computing the gradient of the image
using the contrast between pixels (scaled between 0 and 1).
Gradients below the low threshold are filtered out and will
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Fig. 1 An overview of the method is shown. First a Canny edge detec-
tion is run using a range of threshold values. The resulting binary
images are processed for contours (b). Each contour is considered a
candidate. These contours have their alignment detected (Note: a dif-
ferent building is used to illustrate this) (c). They are then rotated

to standard alignment, scaled to a standard size, and converted to
grayscale (d). For every candidate, Haar image masks are extracted
from fixed locations to capture contrast (e). Next these contrast val-
ues are discriminative enough to build a model and make accurate
predictions (f)

not be considered edges. Gradients above the high thresh-
old are set as edges and any remaining gradients that are
connected to edges are set as edges. One combination of
parameters will likely not return correct candidates for all
buildings in an image as shown in Fig. 2 because too high
of a threshold can cause gradients of objects that neigh-
bor buildings to become part of its contour while too low
of a threshold may cause the gradients of a building not
to be considered. These issues are almost always the case
when buildings vary in size in the same image because
gaps in high gradients along the side of a building require
lower thresholds which will cause smaller buildings to be
connected to neighboring objects.

In order to be scale invariant the union of the result-
ing contours from many different combinations of Canny
threshold parameters are used to form the set of candi-
dates. If the candidates generated in Fig. 2 from the three
different pairs of threshold values are merged together
then all buildings will be included in the candidate set.

However, as more threshold values are included, more non-
buildings are included as well and create a challenge to later
steps. Threshold values are chosen from a grid which is
parametrized by a step size which controls the density of the
grid. As the step size is decreased, more threshold values
are included which results in more candidates. Section 3.1
studies the trade-off when decreasing the step size in order
to maximize precision and recall.

2.2 Building contour alignment

Contours resulting from Chang’s contour detection [7] are
represented by a set of vectors c and each component vector
ci . From these vectors we want to determine the aggre-
gate direction of the object they represent. By rotating these
candidates into alignment before extraction of the Haar fea-
tures, the features become more discriminative and will
result in an increase in accuracy of the trained classifier
(explained in Section 2.3).
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Fig. 2 This figure shows the
application of Canny edge
detection (center) and contour
detection (right) at various
threshold values to generate
candidates. Red dashed boxes
on the left show candidates that
enclose buildings and green
check marks are candidates that
will be classified as buildings.
As the high threshold parameter
to the Canny edge detector is
varied from 0.1 at the top to 0.9
at the bottom different contours
are generated. There is no
perfect parameters to generate
correct candidates for both
buildings

Determining the aggregate direction is difficult because
buildings may not have their walls parallel to each other
and the edge and contour detection methods may have intro-
duced noise in the vector directions. Consider the simple
example in Fig. 3; suppose we have a contour made up
of four vectors with the following directions and magni-
tudes (30◦, 5), (31◦, 5), (120◦, 3), (120◦, 3) which would
appear to be a rectangle with the longest side as the dom-
inant edge. If the assumption is made that the majority of
the walls length will point in the dominant direction of the
building then we should be able to sum the vectors with the
same angle to determine which angle the majority of the
walls align with. However, taking the sum for each direction
would not capture the similarity of angle(ci) = 30◦ and
31◦. They would be considered independent and (1) would
result in 120◦ as the dominant direction of the building
which is false.

argmaxθ

∑

ci∈c

{|ci | : θ = angle(ci)} (1)

We need to tolerate this noisy data and take these sit-
uations into account because contours can be even more
complex and misleading as seen in Fig. 4. To accomplish
this we use a method similar to a kernel density estimation

which utilizes a sum of Gaussian distributions, one for each
vector’s degree normalized by its magnitude, shown in (2).
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(2)

To determine the alignment direction we evaluate the sum-
mation for a specific input degree from 0◦−180◦. Algorithm
1 formalizes this method. For each contour segment ci the
angle α is determined using the arctangent. The Gaussians
are normalized based on their magnitude to the sum of
all magnitudes. The maximum θ is then found by iterat-
ing over 180 possible angles. Figure 4 shows this method
not only handles the specific issue we discussed of non
parallel walls but also tolerates noise in the contour data.
Noise meaning jitter in the angle of the vectors as they wrap
around the building. This can be due to pixelation error dur-
ing capturing the image, contours containing vectors that
don’t overlap the building walls, or non-rectangular building
shapes. This rotation method not only increases classifica-
tion accuracy but does so with negligible increase in time
(shown in Section 3.5).
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Fig. 3 Comparing the direction
information obtained from the
two discussed equations we can
see a disagreement. The input
contour contains four vectors
(ci , 1 ≤ i ≤ 4) Eq. 1 results in
an aggregate angle of 120◦
while (2) results in the a more
expected direction of 30.5◦
because it is the mean of the
angles. For our application
rounding to 30◦ and 31◦ would
both yield satisfactory features

2.3 Building candidate feature construction

To build a classification model that can filter candidates
into building and non-building, we need features that can
discriminate effectively and are efficiently computed. Haar
features have been shown to quickly capture discrimina-
tive contrast patterns effectively [26]. They are generated
by taking a rectangular image mask and dividing it into
two rectangles, with a horizontal or vertical division. The
sum of the pixel values in one rectangle are subtracted
from the sum of the pixel values in the other. Haar features

are discriminative in face and crater detection [8] because
these domains have similar contrast at specific positions
of the candidates. In this work each candidate is scaled to
200 × 200 pixels before Haar features are extracted. Hori-
zontal and vertical Haar features are extracted in a sliding
window fashion which extracts square regions from the
image systematically from the top left to the bottom right.
Square regions are extracted with pixel width 40, 80, and
100 and are applied with a step size of 10 pixels. Also,
square regions are extracted with width 20 with a step size
of 5 pixels in order to capture small details. This yields a
total of 3592 features. Each feature represents the horizon-
tal or vertical contrast in that region with a signed integer
value. A value of 0 means no contrast where a positive or
negative value represents contrast in the positive or negative
direction. The sign of the number is dependent on the order
of the subtraction during extraction and is only useful for
comparison.

By aligning buildings and adding padding to expose its
edges, which have high contrast, we are able to obtain con-
trast patterns between candidates. For example the Haar
features being extracted in Fig. 5a will statistically expose
higher contrast in candidates which contain buildings due
to the edges of this building appearing in the same location
across examples. Also, roof texture and the surrounding area
texture may also be consistent enough to provide linear sep-
arable distributions of values with respect to a building and

Fig. 4 Histograms of the Gaussian summations of contour components evaluated at specific angles when Algorithm 1 is applied to candidates A
(left) and B (right). Our method correctly identified Candidate A at a 99 degree angle and candidate B at a 42 degree angle
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Fig. 5 a Example of a Haar feature being extracted from building can-
didates at the same position on multiple candidates in order capture
the contrast at the edge of the building. b The three highest weighted

Haar features of a Linear AdaBoost classifier in descending from left
to right. The distribution of values extracted from Dataset A for each
feature is shown at the bottom to show their linear separability

non-building. In order to gain more insight we analyze the
top weighted Haar features in the Linear AdaBoost classi-
fier in Fig. 5b where it can be seen that edges of buildings
are very discriminative. We are able to conclude that the
statements from previous work that find shadows a domi-
nant feature are correct. Shadows will generally exist at the
edges of buildings and provide strong contrast values at the
edge of the roof where the shadow begins. Together, many
of these features allow us to obtain a linear separable fea-
ture space to achieve accurate classification. One problem
that arises from using these features is when buildings have
black roofs the contrast between the roof and the shadow
is very low and might appear to be very similar to a solid
surface.

2.4 Candidate permutation search (PHM)

Some candidates are lost during the initial preprocessing
step due to contours that cover part (or too much) of the
building as shown in Fig. 6 This leads to a misalignment of
Haar features.

To solve this problem we present a Permutable Haar
Mesh (PHM) algorithm which iteratively permutes the
building candidate using a custom heuristic function to
search the space shown in Fig. 7. We perform a multi

objective greedy search (for speed) using the following
function (for accuracy) based on the result of a classifier:

H(can,L) = 2

P(bldg)︷ ︸︸ ︷
L+(can)(1 −

P(not bldg)︷ ︸︸ ︷
L−(can))

L+(can) + (1 − L−(can))

Here we take the harmonic mean of L+(can), the prob-
ability that can is a building, and (1 − L−(can)), the
complement of the probability that can is not a building.
Using a greedy search we evaluate each permutation and
select the best increase in probability at each step of the iter-
ation until we cannot improve the hypothesis probability.
This method is outlined in Algorithm 2.

Fig. 6 Example of contours that
overdetected a candidate. The
green and red lines are the
contour lines. The bounding
boxes can be repositioned to
detect these buildings
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Fig. 7 An example of the PHM
search space being traversed in a
greedy manner. Each potential
permutation becomes a link
which represents a new frame
that Haar features are extracted
from. The red lines indicate the
path taken during the search to
cover candidates

2.5 Complexity

Our method is O(n) for generating candidates which places
the training complexity on the classifier used. Each candi-
date generated as a negative example adds to the complexity.
This can be reduced by generating less negative exam-
ples but this may also generate a classifier with lower
performance.

When utilizing the classifier our method is O(n) in terms
of pixels or candidates. In the worst case every pixel could
be considered a candidate which would be determined in
linear time using Canny edge detection and Chang’s linear
contour detection, we call this n. When sampling and merg-
ing using a specific step we incur a fixed cost dependent
on the step size chosen. For 0.05 this is 400 leading to a
potential 400n candidates to evaluate. Our rotation method
is based on the number of vectors in the contour (c) of
the candidate. The maximum number of contours would
be the number of pixels in the candidate. Our approxima-
tion method solves this in 360|c|. Each candidate then has
a fixed number (4, 240) of Haar features extracted which is
one initial cost of the candidates pixels for an integral image
and then 4 additions per Haar feature. When using a linear
classification model, such as Naive Bayes or AdaBoost on
linear decision stump classifiers, each candidate can then be
classified in linear time.

3 Experimental evaluation

In order to evaluate our method we looked for publicly avail-
able datasets that would allow us to study the errors when
applying methods to the average residential buildings as
well as unique industrial buildings. Mnih and Hinton [19]
has generated a benchmark dataset using MassGIS which

contains average residential buildings but industrial build-
ings such as coal and nuclear power plants are not released
by MassGIS. Because of this we have built a dataset of
nuclear power plant buildings that can be shared with the
research community. We utilize these two datasets in order
to showcase the robustness of our algorithm on imagery
with various quality and content.

Dataset A (Fig. 8a) was constructed using images from
Google Maps1 with various resolution, size, illumination,
geographic region, building size, and building purpose.
There are 411 buildings in this dataset which are mostly
non-residential including large industrial and power gen-
eration. These buildings can be very unique to a specific
purpose and vary greatly in size.

Dataset B (Fig. 8b) is a labelled subset of the dataset
used in [19].2 We used a higher resolution (15 cm/pixel)
version of the same imagery acquired from MassGIS
(coq2008 15cm jp2). All buildings have the same illumi-
nation. This dataset is of a contiguous area composed of
mostly residential buildings. In total there are 1337 build-
ings.

We use these datasets to first evaluate the recall obtained
by our method. Recall is an evaluation metric representing
how many buildings have not been missed, this metric is
complementary to precision which represents how correct
each prediction is. After this we discuss how our positive
and negative examples are constructed to train a classifier.
This is followed by an analysis of candidate alignments
effect on these examples on various classifiers. We then
discuss how we can increase recall with our PHM method
which can recover candidates and achieve better accuracy

1https://maps.google.com/
2http://www.cs.toronto.edu/∼vmnih/data/

https://maps.google.com/
http://www.cs.toronto.edu/~vmnih/data/


REVISED PROOF

J.P. Cohen et al.

Fig. 8 Shown here are samples
images of the two datasets used
in analysis. All images are
automatically cropped and
rotated based on their contours.
At the top we have ground truth
buildings and at the bottom are
negative examples

at the cost of a more computationally expensive method.
Finally we evaluate the runtime of different components of
our algorithm.

3.1 Candidate recall

It is important that we achieve high recall in order to not
miss any potential buildings using our candidate generation
method. Unfortunately there are some complications that
we had to overcome. Using a single high and low Canny
threshold value we are only able to achieve low recall val-
ues. In Fig. 9 we explore all possible configurations of low
and high threshold values on dataset A. These results show
a strange surface due to a trade off of capturing different
sizes of the buildings. There does seem to be a peak but
it is very low ≈ 60 %. Some buildings are only identi-
fied as candidates at specific threshold values so changing
them misses some while finding others. The problem is that
these values are not the same for every building in a dataset

Fig. 9 Here all possible high and low threshold values from 0,0 to 1,1
for the Canny edge detector are evaluated on dataset A with step size
0.05. The recall value is plotted and we can observe a spike at 0.2,0.4.
Further inspection reveals that different buildings are being captures at
different combinations resulting is no one maximizing combination of
threshold values

as shown in Fig. 2. This observation leads us to our solu-
tion, because some buildings are only captured by different
threshold values.

To solve this problem we generate candidates by sam-
pling and merging the results of candidate generation at
many different threshold values. The question now is what
Low/High threshold values to use. We experiment with var-
ious step sizes through the space (0,0) to (1,1) in Fig. 10. As
the step size is reduced from 0.2 to 0.01 the recall increases
at a diminishing rate. However, there is trade-off that must
be made when choosing a small step size. In Fig. 11 the total
number of candidates that must be evaluated is analyzed.
As the step size is reduced the total number of candidates
increases to numbers that are much larger than the number
of buildings that exist in those images. This may not only
increase running time but also decrease overall performance
by increasing the chance that a classifier may misclassify.

To put more context on Fig. 10, in dataset A we start with
411 labeled buildings and our preprocessing step is able
to find 86 % when generating about 90,000 candidates. In

Fig. 10 We vary the step size used to generate candidates. As we
decrease the step size, meaning more samples, the recall increases and
we are able to capture more of the buildings
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Fig. 11 We vary the step size
used to generate candidates. As
we decrease the step size in
order to gain higher recall the
number of candidates increases

dataset B we start with 1,337 labeled buildings and our pre-
processing step is able to find 80 % when generating about
240,000 candidates. To put this in perspective, without this
preprocessing step, because the centers can be any pixel, the
width and height can be any combination (non-overlapping),
and the rotation can be between 0◦ − 180◦, a small 1,000
x 1,000 image can easily generate over 1 billion candidates
using a sliding window for just one image in order to achieve
100 % recall.

3.2 Training set construction

To learn an accurate classifier requires constructing a train-
ing set containing difficult realistic examples of what will be
presented to the classifier during testing. We run the candi-
date generation process and subtract the positive examples.
This process includes candidates that partially overlap the
ground truth in order to train on examples that may be
misclassified during testing. Our goal is to select strong
representative examples that we expect to reside near the
decision boundary of a classifier.

For all the evaluations following this section, 10-fold
cross validation is used to calculate the F1-Score obtainable
with a classifier. We define the F1-Score as follows:

F1 = 2
1

recall + 1
precision

precision = true positives

true positives + false positives

recall = true positives

true positives + false negatives

Dataset A has 383 positive and 4,912 negative examples.
Dataset B has 992 positive and 11,488 negative examples.
The number of positive examples is less than the total
ground truth number because some candidates are excluded
because the 5 % padding that is added goes out of the image
bounds and is not included. The datasets are balanced in

order for the classifiers to properly learn. This is done by
randomly sampling with replacement to add duplicates to
the positive examples.

All experiments are performed with the AdaBoost classi-
fier unless otherwise noted. In the next section we compare
many different classifiers. The Weka implementations of
these algorithms are used with their default values.

– AdaBoost is an ensemble of weighted linear classifiers
with one feature each. The classifier is trained for 10
epochs with a weight threshold of 100 to prune the
weights [12].

– Naive Bayes assumes all variables are conditionally
independent with respect to the class label. This clas-
sifier then simply uses Bayes’ rule to determine the
probability of a class attribute given feature values [14].

– J48 constructs a decision tree by iteratively splitting
each tree node if classification error is reduced when
discriminated by an attribute. The Weka version is
based on the C4.5 implementation by Quinlan and uses
the default confidence value of 0.25 to estimate error
[22].

– Random Forest constructs decision trees from subsets
of features which are drawn uniformly with replace-
ment from the global feature set. 100 trees are con-
structed. Each decision tree is constructed similar to
J48. The resulting classification is a majority vote by all
trees for a class label [4].

– Support Vector Machine: The Weka LibSVM imple-
mentation of C-SVC was used as described by [9]. A
radial basis kernel was used with the parameters ν =
0.5, γ = 0, loss = 0.1, cost = 1.

3.3 Rotation impact on classifiers

Analysis is performed to evaluate the effect of rotating
candidates on the overall pipeline. To demonstrate the ver-
satility of this step we evaluate many classifiers. In Fig. 12
it can be observed that rotating candidates increases the
F1-Score of standard classification algorithms.
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Fig. 12 We compare AdaBoost
(with linear decision stump
classifiers), Naive Bayes, J48
Decision Trees, Random Forest,
and SVM (with a radial basis
function kernel) classifiers
applied to datasets A and B via
their F1-Score with and without
rotation of the candidates

To evaluate the following classification methods we gen-
erate candidates from each training set using the sample and
merging method with step size 0.05 and form an isolated
set of candidate images so that 10-fold cross validation can
easily be performed. The results here are the metrics from
these isolated sets and therefore don’t reflect the impact of
recall loss from the preprocessing method which is analyzed
in Section 3.1.

We evaluate AdaBoost because it was used as part of the
Viola and Jones face detection pipeline [26]. AdaBoost is
expected to be well suited for this task because it performs
feature selection on the many Haar features generated from
the candidate in both situations. This is however not the
case. AdaBoost ranks among the worst classifiers evaluated.

We evaluate Naive Bayes and J48 Decision Tree classi-
fication models as baselines which are quick to train that
we expect the reader will be familiar with. A random classi-
fier was used to confirm 50 % F1-Score indicating balanced
training data. We also evaluate Random Forest and find it to
outperform all other methods.

The previous classification models discussed can rapidly
be trained and utilized in comparison to a Support Vector

Machine (SVM) with a non-linear kernel. We were able to
evaluate Dataset A using an SVM with a radial basis func-
tion kernel. However, due to the computational cost we are
unable to evaluate Dataset B using an SVM because the
algorithm did not terminate in 72 hours. It is interesting how
poorly the SVM model performs. We can speculate that it
may be caused by noisy or irrelevant Haar features. A large
amount of features may cause the classifier to weight fea-
tures inappropriately and skew classification. The increase
in performance after candidate rotation may indicate this
as it causes features to have a higher discriminative ability
which can more easily be separated.

Overall, every classification method had its F1-Score
increase after the alignment of candidates. The most signif-
icant increase was for an SVM classifier.

3.4 Best PHM permutation rate

The primary goal of our preprocessing method is to main-
tain high recall. If candidates are still missed we can use the
PHM method to salvage over/underdetected candidates as
outlined in Section 2.4. This method is analyzed in Fig. 13

Fig. 13 Our pipeline using Canny threshold values of low:0.2/high:0.4 varying the permutation rate on both datasets. A permutation rate of 0.01
is able to increase recall while maintaining precision to yield a higher F1 value
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Fig. 14 Here we show the
impact of rotation on runtime
during the contour generation
(a) and Haar feature extraction
(b) parts of the process

to study how the F1-Score is impacted as the permutation
rate is increased. For these experiments we used one com-
bination of high and low Canny threshold values instead
of merging many values together which yields lower recall
values from the start.

In Fig. 13 as the rate of permutation increases so does the
recall. However, similarly as the permutation rate increases
the precision falls. The increase in precision error is due
to more candidates being presented to the classifier which
appear to be buildings as a result of the PHM process itself.

Fig. 15 Here the runtime is
evaluated using the complete
pipeline for our ML and PHM
methods
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A compromise is found at the peak of the F1-Score plot of
0.01.

3.5 Linear time feature extraction

Our machine learning pipeline runs in linear time as theo-
retically explained in Section 2.5. We empirically evaluate
the runtime on a single 3.07 GHz Intel Xeon CPU. How-
ever many parts of the algorithm are easily made parallel to
achieve major speed improvements.

The first way to empirically show this is during the initial
contour extraction phase analyzed in Fig. 14a. Here images
are processed one after another, the total number of pix-
els processed is plotted against the time taken. Here it is
observed that aligning the contours only slightly increases
the processing cost.

In Fig. 14b we perform the same evaluation but allow the
process to continue to the step of extracting Haar features
from every candidate. A strange result is that it takes less
time when we add the rotation step. An answer for this may

Fig. 16 Some images from
Dataset A are analyzed with our
machine learning method using
an AdaBoost classifier.
Predictions are highlighted in
yellow. On these examples we
detect over 90 % of the
buildings except on heavily
clustered buildings around
nuclear power plants which
present a difficult task because
candidate building borders abut
each other and prevent shadows
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be that the scaling phase before Haar features are extracted
is sped up because images contain less edges on diagonals.

In Fig. 15 we evaluate the entire pipeline and observe
that our basic machine learning (ML) approach appears
significantly faster than PHM. For every candidate encoun-
tered during the algorithm the PHM will search pos-
sibly 100’s of surrounding candidates to find a better
match. From our experience the machine learning approach
appears to work in almost realtime on reasonably sized
images.

4 Related work

Automated labeling of aerial images has been a motivat-
ing problem for researchers for a very long time [13]. The
development of an automated system to identify discrete
objects, such as buildings, has been a much sought after
goal. Many techniques from the field of computer vision
have been employed, as well and statistical machine learn-
ing approaches. A number of surveys including [1, 11, 18]
indicate the depth of this field.

Unlike our method which relies only on RGB images,
much work has been done using very high spatial resolu-
tion (VHR) multispectral data, [25] synthetic aperture radar
(SAR) data [23] and light detection and ranging (LIDAR).
This information has been used to filter out sections of
images corresponding to non-building areas such as vegeta-
tion or water. Information such as azimuth and zenith angles
has been used to calculate the shadow locations and near
infrared to better determine building shadows from plant
shadows [21].

Working only with images, other researchers have
explored techniques using many different types of features
that can capture texture information, color, shape, and con-
textual information. Simple features can be built using the
color and intensity of pixels, and gradient based features
have also been used. Local scale and rotation invariant fea-
tures like Lowe’s SIFT [17] and the sped up version SURF
[2] have been evaluated [24, 30].

Shadows have been picked up as a powerful building
indicator that can be identified by simple algorithms simi-
lar to ours [13, 28]. Machine learning has been employed
extensively, with various systems using features to train
classifiers such as Support Vector Machines [20]. Lately,
deep learning techniques such as Convolutional Neural
Networks have been used to good effect [19].

Our method stands out from these other approaches
because of our focus on speed and applicability to all
geospatial imagery because our method only needs pure
RGB images and does not require a near-infrared channel or
azimuth and zenith angles. Also, unlike other methods we
provide an implementation of our method.

5 Conclusion

In this paper we describe algorithms for reducing discrete
object detection in reflective geospatial imagery to machine
learning, specifically in the case of buildings. Results from
the application of this method are shown in Fig. 16. We have
shown the complex patterns of a discrete object’s contrast
features can be learned using state of the art ML methods.
The reduction requires non-trivial ML-aware preprocessing
methods. We have shown that these methods consistently
increase the performance of classification algorithms. We
also present the concept of a PHM in order to recover
candidates that fail to be classified correctly. This method
generates a search space which has potential to greatly
increase detection rates and requires further research to fully
utilize beyond what is explored in this paper.
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