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Abstract—Recent research efforts aim at utilizing Big Cli-
mate Data to predict floods 5 to 15 days in advance. Current
simulation models forecasting heavy precipitation, a major
factor related with flood occurrences, are computationally ex-
pensive and limited by their error amplification. In this paper,
we introduce Spatio-Temporal Asynchronous Co-Occurrence
Pattern to associate heavy precipitation with dense precipitable
water and explore long-lead flood prediction from machine
learning perspective. Our model predicts one location’s flooding
risk by connecting the heavy precipitation with its preceding
precipitable water through a association mining method for
asynchronous co-occurrence location discovery and a spatio-
temporal ensemble learning method for predictive modeling.
Our framework requires less computational cost and smaller
train data while being compared to other existing approaches.
In addition, our framework is designed to be scalable and
allows distributed computing. Our real-world case study has
achieved 87% accuracy on predicting the heavy precipitations
which trigger severe floods at least 9 days in advance.

Keywords-Spatiotemporal Patterns; predictive modeling;
Flood Prediction

I. INTRODUCTION

Atmospheric and climate data have been intensively col-
lected through various means and keep increasing enor-
mously over time. Simulating atmospheric circulation using
ensemble regression models is the most common way of
extreme weather forecasting [1]. However, this type of sim-
ulations are computationally expensive when processing the
global atmospheric data to simultaneously build the models
[2]. Besides, the simulation errors are amplified after running
regression over a long lead-time [3]. Therefore, scientists are
still struggling to utilize this unstructured Big Climate Data
[4] to predict severe floods with acceptable accuracy 5 to 15
days ahead.
The extreme precipitation accumulation has been studied by
[5], [6] and is assumed to be a major trigger of floods.
Since heavy precipitation come from dense precipitable
water retained in the atmosphere [7], we propose a new
concept, Spatio-Temporal Asynchronous Co-Occurrence
Pattern (STACOP), to extend the causal factors of floods
from local precipitation to global precipitable water. Based
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Figure 1. A Spatio-Temporal Asynchronous Co-Occurrence Pattern is
an association connecting global dense precipitable water (PWC) to a
target location’s formation of heavy precipitation (EPC). This formation
progresses over space and time and takes a transformation time of length
l. The bars represent the time windows within the same periods.

on this concept, we design a temporal association mining
method to identify the asynchronous co-occurrence between
one location’s heavy precipitation and dense precipitable
water of other locations. To the best of our knowledge, we
are the first team to propose a spatio-temporal modeling
framework connecting flood, heavy precipitation, and dense
precipitable water for long-lead flood prediction.
We first define Extreme Precipitation Cluster (EPC) as a
time window to represent the heavy precipitation accumu-
lated within this window at a location. To ensure the EPCs
identified by our search algorithm having the highest poten-
tial of triggering floods at one location, we utilize this loca-
tion’s historical severe flooding events to approximate this
location’s water-holding capacity [8] with three thresholds.
We further define Precipitable Water Cluster (PWC) as a
time window to represent dense precipitable water measured
within this window at a location. Our key assumption is that
any EPC is contributed by the PWCs occurring at certain co-
occurrence locations some time earlier [5]. Using Figure 1 as
an example, if there are PWCs at location A, B, and C today
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Figure 2. The proposed framework for long-lead flood prediction.

and these PWCs are moving toward the target location under
certain circumstances, one week later, heavy rainfall starts to
drop at this target location for days and to form an EPC due
to the approaches of these PWCs. This scenario is considered
as an STACOP of this target location’s flood occurrences.
A, B, and C are called the Asynchronous Co-occurrence
Locations of this STACOP. The asynchronous co-occurrence
locations are identified by our temporal association mining
method which extracts the most associated spatial features
before the predictive modeling. Therefore, we reduce the
training data size and remove the irrelevant and redundant
factors from the entire spatio-temporal domain. We further
adopt a temporal cascading voting approach to assemble
the Decision Tree models learned from different lead-time
and build the final predictive model. An outlook of our
framework is shown in Figure 2.
We have conducted a case study to predict Iowa’s sever
flooding events using thirty years of historical atmospheric
and daily precipitation data of Iowa. Our association mining
method identifies the asynchronous co-occurrence locations
associated with the EPC occurrences in Iowa. The results
obtained from the models using the features extracted from
asynchronous co-occurrence locations have the advantages
on computational cost and prediction performance over
the models built on the entire spatial space. Overall, our
contributions are:

• We are the first to utilize the historical severe flooding
events to approximate the water-holding capacity for
identifying the EPCs with the highest potential of
triggering floods.

• We introduce Spatio-Temporal Asynchronous Co-
Occurrence Pattern to associate heavy precipitation
to dense precipitable water and then develop a tem-
poral association mining method to identify the spa-
tial associations between one target location and its
asynchronous co-occurrence locations. Using features
extracted from these asynchronous co-occurrence loca-
tions, we dramatically reduce the training data size for
modeling.

• Our framework fits the Map-Reduce-style paralleliza-
tion and is scalable.

• Our real-world case study has shown that our ensem-
ble model requires less computational cost and has
achieved 87% accuracy while predicting severe floods
at least 9 days in advance.

The rest of this paper is organized as follows. In Sec-
tion II-A, we define EPC and discuss how to approximate the
water-holding capacity. Next, we define PCW and introduce
STACOP to associate EPCs and PWCs with a temporal
association mining method to identify the asynchronous
co-occurrence locations in Section II-B. We then propose
a spatio-temporal predictive model for flood prediction in
Section II-C. In Section III, we evaluate our proposed
framework through a case study using the real-world data
sets. The related works are then discussed in Section IV.
Finally, our study is concluded in Section V.

II. THE PROPOSED FRAMEWORK

To connect extreme precipitation and dense precipitable
water for long-lead prediction on the flood triggered by
heavy rainfalls, our framework includes three major tasks,
heavy precipitation discovery, asynchronous co-occurrence
location identification, and predictive modeling.

A. Extreme Precipitation Cluster Discovery

Flooding is often produced by the abnormal increase in
precipitation within certain period of time. We consider the
heavy precipitation within a time window as an Extreme
Precipitation Cluster.

Definition 1: An Extreme Precipitation Cluster (EPC)
is a time series data consisting of n precipitation measure-
ments, p1, p2, . . . , pn, collected at a certain location, where

n ≥ π, ∀pi ≥ θp : i = 1, 2, . . . , n, and
∑n

i=1
pi

n > αp.
By our design, an EPC can be used to represent the true
nature of a temporal blocking of different time window
lengths. The αp and θp can be referred to as the volume
thresholds and π can be referred to as the accumulation
speed threshold. Different locations have different water-
holding capacities for precipitations [8]. In other words,
when the precipitation level exceed one location’s water-
holding capacity, flood is very likely to occur at this lo-
cation. Therefore, the accumulation speed and volume of
precipitation are two main indicators of flood occurrences.
We let α and θ be the percentile between 0% to 100% and
αp be the αth percentile value and θp be the θth percentile
value among a collection of precipitation measurements.
To approximate one location’s water-holding capacity, we
propose using this location’s historical severe flooding events
to validate α, θ and π. If a severe flood is covered by an
EPC, this flood’s starting time is within or soon after the
time window of this EPC. We then define Positive Extreme
Precipitation Cluster (P-EPC) as an EPC which covers a
severe flooding event. From each setting of α, θ, and π, we
can identify a set of EPCs including a subset of P-EPCs.
We exam all the settings and find those settings with which
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Figure 3. Co-Occurrence Band and Co-Occurrence Rate of a location
are calculated based on the overlap between one time-shifted PWC at this
location and one EPC at the target location.

our search algorithm identifies a set of P-EPCs covering
every historical severe flooding. We choose the setting with
the highest P-EPC rate, the total number of P-EPCs divided
by the total number of EPCs, as the best configuration to
identify the EPCs with high possibility of causing floods.

B. Spatio-Temporal Asynchronous Co-Occurrence Pattern

Heavy precipitation comes from dense precipitable water
[7]. The precipitable water is the total water vapor contains
in an atmospheric column bottomed at the ground surface
and will start to turn into precipitation under certain con-
ditions, such as the changes of temperature [9]. Similar
to EPC, we define Precipitable Water Cluster (PWC) to
represent dense precipitable water.

Definition 2: A Precipitable Water Cluster (PWC) is a
time series data consisting of n precipitable water measure-
ments, w1, w2, . . . , wn, at a certain location, where n ≥ π,

∀wi ≥ θw : i = 1, 2, . . . , n, and
∑n

i=1
wi

n > αw.
Considering the transformation from precipitable water to
precipitation progressing over space and time (Figure 1),
we define Spatio-Temporal Asynchronous Co-Occurrence
Pattern (STACOP) as follows.

Definition 3: A Spatio-Temporal Asynchronous Co-
Occurrence Pattern (STACOP) of a location G is a
transformation pattern indicating the fact that the PWCs
occurring at the asynchronous co-occurrence locations on
time t always lead to the occurrences of EPCs on time t+ l
at G under certain circumstances, where l is the lead-time
of this STACOP.

To identify asynchronous co-occurrence locations, we
propose a temporal association mining method with two new
measures, Co-Occurrence Band (COB) and Co-Occurrence
Rate (COR), used to evaluate the relationship between a
target location’s EPCs and a source location’s PWC. We
first define an overlap() function to calculate the temporal
association between two clusters.

Definition 4: Given an EPC P = {ta+1, ta+2, . . . , ta+q}
and a PWC W = {tb+1, tb+2, . . . , tb+r}, where a and
b are the start time, and q and r are the lengths of
P and W , respectively. Given a lead-time l, we have
Ṕ = {ta+1−l, ta+2−l, . . . , ta+q−l}, where Ṕ is obtained by

shifting P by l forward. An overlap function, denoted as
overlap(P,W, l), returns length(Ṕ ∩ W ) as the temporal
association between P and W .
This overlap() function returns the overlapping length of
a PWC and a time-shifted EPC and is used to indicate the
possible contribution of this PWC to this EPC over time.
Using Figure 3 as an example, after shifting the PWC by 7
forward, the overlapping between the EPC and the shifted
PWC is 3. We consider this overlapping indicates the degree
of contribution by the PWC to the EPC. Next, we define Co-
Occurrence Band to measure the association of a source
location with respect to a target location.

Definition 5: At a target location G, there are total j
EPCs, P1, P2, . . . , Pj . Meanwhile, at a source location
S, there are total k PWCs, W1,W2, . . . ,Wk. The Co-
Occurrence Band (COB) of location S with respect to
location G with a lead-time l is calculated as:

COB(S,G, l) =
∑j

x=1

∑k
y=1 overlap(Px,Wy, l).

We consider the source locations having high COB with re-
spect to a target location have high possibilities of being the
asynchronous co-occurrence locations of this target location.
However, certain locations having high COB is due to the
long length of PWCs, not due to the transformation from
PWCs to EPCs. Therefore, the locations with long PWCs
consistently have dense precipitable water so the target
location’s EPCs always overlap with these locations’ PWCs.
We further introduce Co-Occurrence Rate to measure this
situation.

Definition 6: The Co-Occurrence Rate (COR) of lo-
cation S with k PWCs, W1,W2, . . . ,Wk, with respect to
location G with a lead-time l is calculated as:

COR(S,G, l) = COB(S,G,l)∑k

y=1
length(Wy)

.

A illustrative example of how to calculate COB and COR is
given in Figure 3. A location with low COR means that
the PWCs occurring at this location does not frequently
contribute to the formations of the EPCs at a target location
after a lead-time l, so this location is not considered as
asynchronous co-occurrence location. Distributed computing
can be applied to this asynchronous co-occurrence location
discovery since the evaluation of each location is indepen-
dent from each other.

C. Spatial-Temporal Predictive Modeling

With different lead-time, we obtain different sets of asyn-
chronous co-occurrence locations to indicate the progres-
sion of EPCs over spatial space. Using the atmospheric
factors collected at each set of asynchronous co-occurrence
locations as the features, we train the models under dif-
ferent given lead-time. These models learn the conditions
under which the PWCs occurring at the asynchronous
co-occurrence locations are most likely to form P-EPCs
which eventually trigger floods at the target location. Each
model can be trained via distributed computing because



Table I
THE SETTINGS WITH THE HIGHEST P-EPC UNDER DIFFERENT π.

α θ π P-EPCs EPCs Rate
87.8% 39.5% 3 280 910 30.7%
87.8% 39.5% 4 248 747 33.2%
84.7% 46.2% 5 270 794 34.0%
78.3% 46.7% 6 242 902 26.8%

the data used to train an individual model is independent
from the others. We choose the Decision Tree algorithm to
build these models because of its build-in feature selection
and interpretable output. To consolidate these models into
one ensemble predictive model, we propose a Temporal
Cascading Voting Ensemble Modeling approach with the
considerations of all contributive factors over spatial and
temporal domains. If the majority of the Decision Tree
models predict the same P-EPC occurrence at the target
location, our ensemble model outputs a positive prediction
of a P-EPC occurrence. A P-EPC prediction on time t means
that there will be a severe flood occurring on or after time
t + π, where π is the minimal length of an P-EPC. As a
result, we can predict the severe floods caused by heavy
precipitation at least l+π in advance, where l is the shortest
lead-time used in the model learning process.

III. CASE STUDY: LONG-LEAD FLOOD PREDICTION IN
IOWA

A. Data Sources Description

The daily averages of the precipitation accumulations
measured in Iowa between 1980 and 2010 are used to
investigate the EPC concurrences. We also obtain Iowa’s
severe flooding events occurring between 1980 and 2010
from the Iowa Homeland Security and Emergency Man-
agement’s website [10]. Next, we evenly divide, by 2.5
degree latitude-wise and 2.5 degree longitudes-wise, the
northern hemisphere into 5, 328 geographic locations and
then extract historical atmospheric data recorded at each
location from the NCEP-NCAR Reanalysis dataset [11].
We select nine atmospheric factors, 1,000, 500, and 300
hectopascal (hPa) geopotential height, the temperature at 850
hPa geopotential height, the speed of zonal wind at 850
and 300 hPa geopotential height, the speed of meridional
wind at 850 and 300 hPa geopotential height, and the total
precipitable water in the column of the atmosphere, as the
features of each location.

B. Identifying Extreme Precipitation Clusters

Three thresholds, θ, α, and π, are needed for EPC
discovery. By varying θ and α from 0% to 100% and π from
3 to 14 days, we identify the EPCs in Iowa between 1980
and 2010. Using the records of the historical severe flooding
events [10], we evaluate each configuration by comparing
the dates of flooding events with the dates of the EPCs
identified. If there is a flooding event occurring during or

right after an EPC, this EPC is marked as a P-EPC and
this flooding event is considered being covered by this P-
EPC. For each given π, we select the maximal θ and the
maximal α with which our searching algorithm finds the
EPCs covering every flooding events as the best setting. We
then find the best setting of θ and α under different π, which
are listed in Table I. When π ≥ 7, not all the flooding
events are covered by the identified EPCs. The setting of
θ = 46.2%, α = 84.7%, and π = 5 days is selected as the
best configuration because it yields the highest P-EPC rate
and is then used in the rest of our experiments.

C. Identifying Precipitable Water Clusters and Asyn-
chronous Co-Occurrence Locations

Using the daily precipitable water of those 5, 328 loca-
tions, identify the PWCs of every location with the same
setting of θ = 46.2%, α = 84.7%, and π = 5 days.
However, we obtain percentile values from three different
spatial scales of precipitable water data. The global per-
centile values are obtained from the entire precipitable water
data because they represent the ranking of entire precipitable
water of the northern hemisphere. The local percentile values
are obtained from the precipitable water data of every
individual location. As a result, each location has its own
local percentile values. The third type of percentile values
are called target percentile values. In our case, these values
are obtained from the precipitable water data observed at
those locations in Iowa. Using these three types of percentile
values obtained by different spatial scales as thresholds, we
identify three types of PWCs at each location.
We further identify the asynchronous co-occurrence loca-
tions with respect to Iowa by measuring the COB and COR
of every location. To understand the impact of l, we identify
seven sets of asynchronous co-occurrence locations with
lead-time from 4 to 10 days. Using those three types of
PWCs, we calculate 3 × 7 groups of COB and COR of
every locations. From each group, we first select a subgroup
of locations whose COR are higher than the average COR
and then select the locations with top 500 COB of this
subgroup as the asynchronous co-occurrence locations. As
a result, we have identified 21 sets of asynchronous co-
occurrence locations over three different spatial scales and
seven different temporal distances.

D. Pattern Learning

We consider each EPC as one instance and let the start
date of an EPC, t, represent an occurrence of this EPC.
Next, we extract those nine atmospheric factors measured at
time t− l from one set of 500 asynchronous co-occurrence
locations as this instance’s features. Therefore, there are
9 × 500 features included in one instance. We generate
21 data sets from those 21 sets of the asynchronous co-
occurrence locations. The number of instances in each
data set is the number of EPCs identified in Iowa. Fro



Table II
THE PREDICTION ACCURACY OF THE MODELS USING ASYNCHRONOUS

CO-OCCURRENCE LOCATION DATA SETS AND ALL-LOCATION DATA SETS
UNDER DIFFERENT LEAD-TIME.

l Global Iowa Local All
4 0.724 0.735 0.762 0.698
5 0.781 0.709 0.735 0.716
6 0.724 0.739 0.720 0.769
7 0.754 0.739 0.773 0.735
8 0.732 0.720 0.720 0.762
9 0.732 0.698 0.792 0.764
10 0.762 0.769 0.769 0.716

Avg. 0.744 0.730 0.753 0.737
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Figure 4. The accuracies of those four ensemble models built by temporal
cascading voting approach.

comparison, we also generate seven data sets each of which
has 9 × 5, 328 features extracted from the 5, 328 locations
and name these data sets the All-location data sets.
Using the sever flooding records [10], we identify those
EPCs covering a flood event and label them as P-EPCs.
We aim to learn the circumstances under which PWCs
contribute to the P-EPCs. Moreover, each data set is split
into a training set and a test set with 2:1 ratio. The Decision
Tree model is used to train on a training set and then test
on its corresponding test set. The results of the models of
different spatial scales, and the results of the trained model
using all-location data sets under different lead-time l are
listed in Table II.
Our experiments are conducted on a High Performance
Computing Cluster managed by the Research Computing
Department at the University of Massachusetts Boston. The
results have shown that using the features extracted from
our proposed asynchronous co-occurrence locations not only
yields higher or similar accuracies, but also dramatically
reduces the execution time, compared using the features ex-
tracted form all locations. In addition, adopting the local per-
centile values performs the best among the others, because
the locally identified PWCs have a better representation of
abrupt increases of precipitable water at one single location
than those globally identified PWCs.
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Figure 5. The visualization of four groups of locations selected by the
Decision Tree models under three different spatial scales of Global, Local,
and Iowa, and by the models using all locations.

E. Ensemble Modeling

We consolidate the four groups, Global, Local, Iowa, and
All-location, of Decision Tree models (as shown in Table II)
into four ensemble models through our proposed Temporal
Cascading Voting Ensemble Modeling. In each ensemble
model, every Decision Tree model has equal voting power
and the majority votes is the final output of this ensemble
model. We vary the number of models joined to the voting
processes and choose these models based on their lead-time
in chronological order starting from l = 4. The performances
of these four ensemble models built on different series of
lead-time are shown in Figure 4. We have achieved about
87.5% accuracy when predicting the P-EPCs with Local
spatial scale at least 4 days in advance. Since π = 5,
we are able to predict the severe floods caused by heavy
precipitation at least 5+4 days in advance with our ensemble
model.

F. Selected Location Visualization

For further investigation, we collect all the features se-
lected by the models under four different spatial scales:
Global, Local, Iowa and All-location, so we obtain four
collections of features. We trace back four groups of lo-
cations from which these four collections features are ex-
tracted. We then visualize these four groups of locations
on the map, shown in Figure 5. With this visualization, we
have uncovered the paths of moving PWCs, showing the
evidence that the floods could be foreseen by monitoring
the movements of PWCs along these paths. We have also
observed that the locations near the southern border of the
Sahara Desert and the Himalayas mountains are selected by
all four type of models. This observation suggests that the
atmospheric changes occurring at the largest desert and the
highest mountain might have tight connections with Iowa’s
severe floods caused by heavy precipitation.

IV. RELATED WORK

Regression models are commonly used by most re-
searchers to simulate atmospheric circulations for severe
weather forecasting [1]. The limitation of these models is



caused by the amplified effect on simulation errors [3], [12].
As a result, these models have the acceptable prediction
within five days range. In addition, most of the simulation
models are very computational expensive.
Data mining techniques have been adopted to study extreme
weather phenomena and to deeply understand the causal
factors of these phenomena [6], [13], [14], [15], having
the potential of delivering long-lead weather prediction with
less data inputs. Unlike the simulation models, data mining
approaches can be applied to predict the occurrences of
precipitation blocking having high risks of triggering ex-
treme flooding events [5], [6]. In [6], Wang et al. considered
precipitation blocking as temporal cluster with a fixed time
window size to accumulate precipitation. Unlike Wang’s
approach, our newly defined EPC is of various window sizes.
We also incorporate the historical flooding events in finding
the P-EPCs which represent the true nature of heavy precip-
itation with high potential of triggering floods. Furthermore,
current simulation models and data mining models focus
on predicting heavy precipitation without further indications
what the flooding possibilities are. Instead, our proposed
model is designed to predict the P-EPCs.
To achieve load-lead prediction, Wang et al. set a 15-day
windows size for their clusters as the lead-time. Different
from their approach, we propose STACOP to extend the
lead-time by connecting heavy precipitation to PWCs as
the causal factors. From feature selection point of view,
other approaches include the entire feature space during the
modeling process. Through our proposed STACOP, we pre-
process the data to identify the asynchronous co-occurrence
locations for feature extraction before building the models.
As a result, we dramatically reduce the training date size
and computational cost.

V. CONCLUSION

The goal of this study is to help the domain scientists de-
veloping early flood warning systems from machine learning
perspective, which can accurately forecast extreme floods
caused by heavy precipitation at least 9 days in advance
at a global level. Our proposed framework is designed to
be scalable and for distributed computing so it can also be
applied to other spatio-temporal related big data analytics,
such as droughts or hurricanes prediction, in our future work.
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