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ABSTRACT
Identifying impact craters on planetary surfaces is one fun-
damental task in planetary science. In this paper, we present
an embedded framework on auto-detection of craters, us-
ing feature selection and boosting strategies. The paradigm
aims at building a universal and practical crater detector.
This methodology addresses three issues that such a tool
must possess: (i) it utilizes mathematical morphology to ef-
ficiently identify the regions of an image that can potentially
contain craters; only those regions, defined as crater candi-
dates, are the subjects of further processing; (ii) it selects
Haar-like image texture features in combination with boost-
ing ensemble supervised learning algorithms to accurately
classify candidates into craters and non-craters; (iii) it uses
transfer learning, at a minimum additional cost, to enable
maintaining an accurate auto-detection of craters on new im-
ages, having morphology different from what has been cap-
tured by the original training set. All three aforementioned
components of the detection methodology are discussed, and
the entire framework is evaluated on a large test image of
37, 500×56, 250 m2 on Mars, showing heavily cratered Mar-
tian terrain characterized by nonuniform surface morphol-
ogy. Our study demonstrates that this methodology pro-
vides a robust and practical tool for planetary science, in
terms of both detection accuracy and efficiency.

Categories and Subject Descriptors
I.5.2 [Design Methodology]: [Classifier design and eval-
uation; Feature evaluation and selection; Pattern analysis];
I.5.4 [Pattern Recognition]: Applications—Astronomy
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1. INTRODUCTION
Impact craters, the structures formed by collisions of me-

teoroids with planetary surfaces, are among the most stud-
ied geomorphic features in the solar system because they
yield information about the past and present geological pro-
cesses and provide the only tool for measuring relative ages
of observed geologic formations [7, 20]. However, advances
in surveying craters present in images gathered by plane-
tary probes have not kept up with advances in collection of
images at ever-higher spatial resolutions. As a result, there
are “millions” of craters waiting to be identified in a deluge
of high resolution planetary images but no means for their
efficient identification and comprehensive analysis. Today,
as in the past, craters are identified using manual inspection
of images. As a result, comprehensive catalogs of craters
are restricted to only large craters: 42, 283 Martian craters
with diameters larger than 5 km [3], and 8, 497 named lu-
nar craters with diameters larger than a few kilometers [1].
If left to manual surveys, the fraction of cataloged craters
to the craters actually present in the available and forth-
coming imagery data will continue to drop precipitously.
Crater auto-detection techniques are needed, especially to
catalog smaller craters that are most abundant. Surveying
such craters is ill-suited for visual detection, due to their
shear numbers, but well-suited for an automated technique.
In fact, automating the process of small crater detection is
the only practical solution to a comprehensive surveying of
such craters.

Some challenges [14] of designing an accurate crater de-
tection algorithm are as follows: (i) Craters, as a landform
formation, lack strong common features distinguishing them
from other landform formations. Their sizes differ by or-
ders of magnitude. Their rims have often been eroded since
their formation millions of years ago, resulting in shapes



Figure 1: Diagram illustrating the crater-detection framework. (1) Crescent-like shadow and highlight regions
are identified. (2) Shadow and highlight regions that can be matched are used to construct crater candidates.
(3) Haar-like features are calculated using 9 kernels on crater candidates. (4) Craters are identified using
supervised learning.

that depart significantly from circles. They frequently over-
lap, complicating the task of their separation from back-
ground. (ii) Planetary images are taken at different lighting
conditions, at different resolutions, and their quality varies
so that even morphologically identical craters may have dif-
ferent appearances in different images. (iii) Appearances of
other similar landform formations exist in images. For ex-
ample, volcanic cones and valleys fragments may resemble
craters.

A robust and useful crater detection algorithm must ad-
dress these challenges. From a design point of view such an
algorithm has to successfully address the following issues:
(i) How to efficiently identify crater candidates—regions in
an image that have relatively high probability of contain-
ing a crater? (ii) Given a set of crater candidates, how to
accurately classify them into crater and non-crater objects?
An efficient approach in feature construction and selection
and a well designed supervised learning approach are de-
sirable to address this issue. (iii) Given a training set of
crater candidates containing positive and negative examples
(craters and non-craters), how to make a classifier applica-
ble to other images, where candidates have a morphological
character different from what is encapsulated by the train-
ing set? This is the scenario where training and testing
instances are not drawn independently and identically from
a same underlying distribution. Transfer learning is needed
to address this issue while minimizing the overall cost of
classification.

Previous research on crater detection algorithms [16, 10,
6, 2, 14, 23, 25, 5, 17] (also see [19] for a complete bibliog-
raphy of research on auto-detection of craters) focused pre-
dominantly on addressing issue (ii). The problem of finding
crater candidates has only recently been raised [22]; and the
bulk of previous work relies on inefficient exhaustive search
of the entire image. This may work for finding a small num-
ber of large craters in low resolution images, but not for
finding a very large number of small craters in high resolu-
tion images. To the best of our knowledge, the problem of
transfer learning in the context of auto-detection of craters
was not previously addressed. This omission renders most
existing approaches impractical for planetary research as the
benefit of automation decreases significantly if new training
sets need to be established for every new image or even for
various segments of the same image.

This paper addresses all the three design issues in con-
structing a robust and practical crater detection algorithm,
using an embedded framework with feature selection and
boosting. The ultimate goal is to construct a robust and
reliable crater auto-detection framework that can be widely
adopted for planetary research. The flow chart indicating
components of our method is shown in Fig. 1. The three
key contributions are as follows:
• Utilizing mathematical morphology [21] for efficient iden-
tification of crater candidates. The key insight behind our
method is that a crater can be recognized as a pair of crescent-
like highlight and shadow regions in an image (see Fig. 2).
The benefits of identifying crater candidates before the clas-

Figure 2: (A) Diagram explaining why an image of a
crater consists of crescent-like highlight and shadow
regions. (B) An image of an actual 1 km crater show-
ing the highlight and shadow regions.

sification stage, rather than classifying pixel-based image
blocks resulting from exhaustive search of the entire image
are two-fold: (i) Significant computation time is reduced at
the classification stage, and (ii) the number of false posi-
tives detections is reduced, as most of the image, including
background, is removed from being classified.
• Using a combination of Haar-like image texture features
[24] and a modified AdaBoost ensemble supervised learning
algorithm. This approach yields a highly accurate classi-
fier. As an alternative, we also evaluate the use of a simpler
classifier (hereafter referred to as the “Naive” classifier) for
distinguishing between craters and non craters.
• In order to minimize training for application of a crater
detection algorithm to a heterogeneous planetary surface,
we modify the basic boosting algorithm so it incorporates
transfer learning to feature selection and classification.

The entire method is evaluated on a large, high resolution



Figure 3: Diagram illustrating individual steps in constructing crater candidates

image of Martian surface (37, 500×56, 250 m2) featuring spa-
tial variability of crater morphology. Experimental results
demonstrate robustness and good accuracy that validates
our approach and makes it feasible to embed our algorithm
into a processing pipeline for auto-creation of global, “mil-
lion crater” catalogs of small craters on Mars, Mercury, and
the Moon.

The rest of the paper is organized as follows. Section 2
provides a brief review on crater-detection methods. Sec-
tions 3 and 4.1 explain how we construct crater candidates
and Haar-like texture-based features from those candidates.
Sections 4.2 and 4.3 discuss the three supervised learning
algorithms used for crater detection, and Section 5 presents
the result of applying our methodology to find craters in the
test image. Section 6 summarizes our work and discusses
future directions.

2. RELATED WORK
Salamuniccar et al. provide a complete and exhaustive re-

view of all previous research on crater detection algorithms
[19]. All existing approaches to detecting craters in plane-
tary images can be divided into two general categories: un-
supervised approaches and supervised approaches.

The unsupervised methods identify crater rims in an im-
age as circular or elliptical features [16, 10, 6, 2, 14]. In par-
ticular, the original image is preprocessed [16, 2, 14] to en-
hance the edges of rims, and the actual detection is achieved
by means of the Hough Transform (HT) [11] or genetic al-
gorithm [10]. Unsupervised methods have the advantage of
being fully autonomous but they are generally less accurate
than supervised methods.

The supervised methods [5, 23, 25] take advantage of do-
main knowledge in the form of labeled training sets that
guide the classification algorithm. In [5, 23], a continuously
scalable template-model technique is used to achieve detec-
tion. In [25], a number of algorithms are tested and the Sup-
port Vector Machine algorithm is shown to achieve the best
rate of crater detection. More recent methods [14, 17] incor-
porate techniques originally developed [24] for the purpose
of face detection. These methods concentrated on the classi-
fication component of crater detection and did not incorpo-
rate identification of crater candidates or transfer learning,
as what has been designed and implemented in this paper.

3. CRATER CANDIDATES
In order to reduce the load on the classification module,

we first identify crater candidates—parts of an image that
contain crescent-like pairs of shadows and highlights. Iden-
tification of crater candidates is achieved using an image
processing method based on mathematical morphology pro-
posed by Urbach et al. on object detection in [22, 21]. Fig.

3 shows a flow diagram of the method used for identifica-
tion of crater candidates. The highlight and shadow shapes
are processed in parallel using inverted image to process the
shadow shapes. The goal is to eliminate all the shapes that
are not indicative of craters while keeping the highlight and
shadow shapes. Background removal deletes shapes, such
as mountains, that are too large to be part of the craters;
the power filter removes shapes that lack sufficient contrast;
the area filter removes shapes that are too small for reliable
crater detection; the shape filter uses shape attributes that
are invariant to translation, rotation, and scaling [21] to pre-
serve or remove regions of an image exclusively on the basis
of their shapes. Utilization of the shape filter, that requires
only a singe parsing of an image, improves performance by
a factor of 5 to 9 in comparison with other shape detection
methods [21]. In the final step, the algorithm matches high-
light and shadow regions so that each pair corresponds to
a single crater candidate. This method does not have high
enough accuracy to constitute a stand-alone crater detection
technique, but is ideal for identification of crater candidates.

4. CLASSIFICATION
The classification stage uses supervised learning to distin-

guish (with high accuracy) between craters and non craters
in the set of crater candidates. The objects of classification
are image blocks containing crater candidates and the classi-
fication is performed on the basis of Haar-like image texture
features.

4.1 Haar-like feature construction
We use image texture features reminiscent of Haar basis

functions first proposed in [18] for detection of objects and
later popularized by [24] in the context of face detection.
These features can be thought of as image masks consisting
of black and white sectors. The value of a feature is the
difference between the sum of gray scale values in pixels
located within the white sectors and the black sectors. We
use nine types of features (all squares) as shown in Fig. 4.
All features can be calculated very efficiently in one image
scanning using the concept of integral image [24].

To represent a crater candidate in terms of Haar-like fea-
tures, we first extract square image blocks around each crater
candidate having size twice that of the candidate. For ex-
amples of image blocks and features positioned over them
see Fig. 8. The underlying texture information of each
crater candidate is encoded in the set of nine features, hav-
ing various granularities and positioned at finely sampled
locations. Thus an image containing a crater candidate and
its immediate surrounding is described by thousands of tex-
ture features. Those features are not independent from each
other and those over-complete features compensate the lim-



Figure 4: 9 rectangle features: (A) 2 two-rectangle
features, (B) 2 three-rectangle features, (C) 5 four-
rectangle features.

ited texture information a single rectangle feature can cap-
ture. If a single simple feature can be viewed as a weak
learner, that is, only using this feature to classify a crater
candidate, it is a natural choice to build a strong classifier
out of thousands of weak learners, using the boosting en-
semble method.

4.2 Classifiers: Boost and Naive
To classify crater candidates into craters and non craters

on the basis of texture features, we have designed and im-
plemented two supervised learning algorithms. These algo-
rithms simultaneously select sub-set features necessarily for
accurate classification and train the final ensemble classifier
based on the supplied training set. The first is the Boost
algorithm, a variant of the AdaBoost algorithm inspired by
the methodology of face detection [24]. The second is the
Naive algorithm—a drastic simplification of the Boost algo-
rithm without boosting iterations. The two algorithms are
described in Algorithms 1 and 2.

The Boost algorithm generates a sequence of weak classi-
fiers ht(f) and combine them through a weighted approach
to build a strong classifier H(x̂):

H(x̂) =
T∑

t=1

αtht(f), (1)

where T is the number of iterations, t = 1, . . . , T , x̂ =<
f1, . . . , fN > is the feature vector that describes a crater
candidate; f , f ∈ {f1, . . . , fN}, is the single feature used
to construct a weak classifier ht(f), and αt is the weight
of hypothesis ht(f). The Boost algorithm (See Algorithm
1) iteratively selects one feature at a time and stops when
reaching T iterations; note that T << N . Each iteration
selects one best feature and consists of three core steps:

1. Weak Classifier Learning: The construction of weak
classifier ht(f) on a single feature f at iteration t is
straightforward. Given examples (x̂1, y1), . . . , x̂n, yn)
where yi = 0, 1 (i = 1, . . . , n) for non-crater and crater
examples respectively, a weak classifier ht(f), consists
of a feature f , a threshold θ, and a polarity p indicating
the direction of the inequality:

ht(f) =

{
1 if f(x̂) < pθ
0 otherwise

(2)

A weak leaner ht(f) can be essentially viewed as a
decision stump, a single-node decision tree.

2. Feature Selection: Calculate the weighted error sum of

each weak classifier and select the best learner (a.k.a.
the best feature) that produces the minimum error.

3. Weight Updating: Update weights using the same method
proposed in AdaBoost [9]—increase the weights of in-
correctly classified examples and decrease the weights
of correctly classified examples. The incorrectly clas-
sified examples will have more chances of being chosen
in the next iteration when calculating the weighted er-
ror sum in step 2. Hence, the next selected feature
concentrates more on the mistakes made by the earlier
features. The key advantage of the Boost algorithm is
that the weights encode the classification results of the
previous features and this information is used to select
the next best feature.

The number of craters usually is less than the number of
non-craters. The initial weight of each training instances
is designed to cope with imbalance data by using different
group average weights in the positive and negative classes,
respectively.

Algorithm 1 Boost: A boosting algorithm for feature se-
lection and classification
Require: .

(1) Given crater candidates (x̂1, y1), . . . , (x̂n, yn) where
yi = 0, 1, i = 1, . . . , n for non-crater and crater examples
respectively.
(2) Initialize weights wi = 1

2m
if yi = 0, wi = 1

2l
if

yi = 1, where m and l are the number of non-crater and
crater examples respectively.

1: for t = 1 . . . T do
2: Normalize the weight, wt,i =

wt,i∑n
j=1 wt,j

, i = 1, . . . , n

so that wt is a probability distribution.
3: Select the best weak classifier with respect to the

weighted error
εt = argminf,p,θ

∑
i wi|h(x̂i, f, p, θ) − yi|,

For each feature, f , train a classifier h, which is re-
stricted to using a single feature.

4: Define ht(x̂) = h(x̂, ft, pt, θt), where x̂, ft, pt, θt are
the minimizers of εt.

5: Update the weights:
wt+1,i = wt,iβ

1−ei
t , i = 1, . . . , n

where ei = 0 if a crater candidate xi is classified cor-
rectly, ei = 1 otherwise, and βt = εt

1−εt
.

6: The final strong classifier is:

h(x̂) =

{
1

∑T
t=1 αtht(x̂) ≥ μ

∑T
t=1 αt

0 otherwise

where αt = ln 1
βt

and μ is a user-defined threshold.
7: end for

In order to reduce the computational cost of the Boost
algorithm, we design a simplified greedy version of the algo-
rithm and call it the Naive algorithm (see Algorithm 2). The
Naive classifier uses the same weak classifier learning step
and selects the top T best features using the weighted error
sum in the step of feature selection as a criterion without
any further iterations on weight updating.

4.2.1 Time Complexity Analysis
The time complexity of the Boost algorithm is O(TNn),

where n is the number of training examples, N is the number
of total features, and T is the number of boosting iterations.



In particular, each feature produces n weak classifiers, based
on each feature value for every training example according to
the threshold θ; N features produce Nn classifiers; it takes
O(Nn) time to find the weak classifier that produces the
minimum error; and it takes O(TNn) time to select the top
T features after T boosting iterations.

The time complexity of the Naive algorithm is O(Nn)
as no boosting iterations are performed. Interestingly, the
Naive classifier performs well in some circumstances during
our real-world case study (see Section 5).

Algorithm 2 Naive: A naive greedy algorithm for feature
selection and classification
Require: .

(1) Given crater candidates (x̂1, y1), . . . , (x̂n, yn) where
yi = 0, 1, i = 1, . . . , n for non-crater and crater examples
respectively.
(2) Initialize weights wi = 1

2m
if yi = 0, wi = 1

2l
if

yi = 1, where m and l are the number of non-crater and
crater examples respectively.

1: Normalize the weight, wt,i =
wt,i∑n

j=1 wt,j
, i = 1, . . . , n

so that wt is a probability distribution.
2: Select the best t (t = 1, . . . , T ) weak classifiers with

respect to the weighted error
εt =

∑
i wi|h(x̂i, f, p, θ) − yi|,

For each feature, f , train a classifier h, which is re-
stricted to using a single feature.

3: Define ht(x̂) = h(x̂, ft, pt, θt) where x̂, ft, pt, θt are the
minimizers of εt, and t = 1, . . . , T.

4: βt = εt
1−εt

.
5: The final strong classifier is:

h(x̂) =

{
1

∑T
t=1 αtht(x̂) ≥ μ

∑T
t=1 αt

0 otherwise

where αt = ln 1
βt

and μ is a user-defined threshold.

4.3 Transfer learning
Boost and Naive assume that both training and testing

instances are drawn independently and identically from a
same underlying distribution. What if training and test in-
stances are from different distributions? We have designed
a transfer learning based algorithm, inspired by [8], which
is capable of transferring knowledge from the old training
data to the new test data. We refer to it as the TL algo-
rithm. The TL algorithm (see Algorithm 3) has the same
three steps as the Boost algorithm, but the weight updating
step is different as it attempts to transfer knowledge from
the original training set to the new test data. The Boost al-
gorithm assumes that both, training and test instances are
drawn independently and identically from an underlying dis-
tribution and it is not expected to perform well if the test
data has a different distribution from the training data; this
is because the critical set of features that best serves to dis-
tinguish craters in the training set may not be the same as
that in the test set.

We denote the previous original training data as the diff-
distribution training data; here we are uncertain about the
similarity and usefulness of this data for the new task. And
we denote the additional small portion of labeled test data,
which is representative of the new set of crater candidates,
as the same-distribution training data. During the train-
ing process, we apply the Boost algorithm to the same-

distribution training data to build a model; the weights of
misclassified examples are increased during the next itera-
tion while the weights of correctly classified examples are
decreased. The key component is that we transfer knowl-
edge from the old training data to the new test data by
modifying the weights of misclassified examples from the
diff-distribution training data. Those misclassified exam-
ples are considered as the ones that are dissimilar to the
same-distribution examples and should be de-emphasized.
Accordingly, we decrease (not increase) the weights of those
examples in order to weaken their impact. The weight-
changing mechanism selects good examples (similar to the
labeled test data) from the old training data to compensate
the insufficient training examples in the same-distribution
data.

The difference between the TL algorithm and the exist-
ing algorithm TrAdaBoost [8] is that we use embedded ap-
proach in feature selection. In our method, we select the
best feature in each iteration while constructing a strong
classifier sequentially. The key contribution of the algo-
rithm is that some features contribute more in the new
test data and should be transferred and emphasized, while
some features provide less or no contributions at all and
thus should be de-emphasized. The sub-set features best
discriminates craters and non-craters in old training set is
not necessarily the same sub-set features in a new unseen
test set. The change of weight factor β = 1

1+
√

2ln n
T

for mis-

classified examples from diff-distribution and the threshold
voting

∑T
t=�T

2 � αtht(x̂) ≥ μ
∑T

t=�T
2 � αt in the final strong

classifier are to assure that the average training loss on the
diff-distribution converges to zero [8, 9].

5. EXPERIMENTAL RESULTS

5.1 Test image
We have selected a portion of the High Resolution Stereo

Camera (HRSC) nadir panchromatic image h0905 [12], taken
by the Mars Express spacecraft, to serve as the test set. As
illustrated in Fig. 10, the selected image has the resolution
of 12.5 meters/pixel and the size of 3, 000 by 4, 500 pixels
(37, 500 × 56, 250 m2). A domain expert manually marked
∼ 3, 500 craters in this image to be used as the ground truth
to which the results of auto-detection are compared. The
image represents a significant challenge to automatic crater
detection algorithms because it covers terrain having spa-
tially variable morphology and because its contrast is rather
poor (this is most noticeable when the image is inspected at
a small spatial scale). We divide the image into three sec-
tions denoted as the west region, the central region, and the
east region (see Fig. 10). The central region is characterized
by surface morphology that is distinct from the rest of the
image. The west and east regions have similar morphology
but the west region is much more heavily cratered than the
east region.

5.2 Training Set Construction
In the first stage of our method, we identify 13,075 crater

candidates in the image using the pipeline depicted in Fig. 3.
The data set is imbalanced as the majority objects are non-
crater candidates. 1,089 Haar-like features are constructed
using the 9 rectangle features described in Fig. 4. The
training set for the Boost and Naive algorithms consists of



Figure 5: Performance results of the Boost, Naive, and TL algorithms; parameter values: Boost, 150 features
selected and μ = 0.525; Naive, 150 features selected and μ = 0.675; TL, 150 features selected and μ = 0.500.

Algorithm 3 TL: A boosting algorithm using transfer
learning for feature selection and classification

Require: .

(1) Given a training set that includes crater can-
didates (x̂1, y1), . . . , (x̂nd , ynd), (x̂nd+1, ynd+1), . . . ,
(x̂nd+ns , ynd+ns), where yi = 0, 1, i = 1, . . . , nd, nd +
1, . . . , nd + ns for non-crater and crater examples
respectively.
This training set has nd diff-distribution examples
(1, . . . , nd) and ns same-distribution examples (nd +
1, . . . , nd + ns), and n = nd + ns.
(2) Initialize weights wi = 1

2m
if yi = 0, wi = 1

2l
if

yi = 1, where m and l are the number of non-crater and
crater examples respectively

1: for t = 1 . . . T do
2: Normalize the weight, wt,i =

wt,i∑n
j=1 wt,j

, i = 1, . . . , n

so that wt is a probability distribution.
3: Select the best weak classifier with respect to the

weighted error
εt = argminf,p,θ

∑
i wi|h(x̂i, f, p, θ) − yi|, i = nd +

1, . . . , nd + ns

For each feature, f , train a classifier h in same-
distribution data, which is restricted to using a single
feature.

4: Define ht(x̂) = h(x̂, ft, pt, θt) where x̂, ft, pt, θt are the
minimizers of εt

5: Update the weights:
wt+1,i = wt,iβ

−ei
t , if nd + 1 ≤ i ≤ nd + ns (increase

the weights for the same-distribution)
wt+1,i = wt,iβ

ei , if 1 ≤ i ≤ nd (decrease the weights
for the diff-distribution)
where ei = 0 if example xi is classified correctly, ei = 1
otherwise, and βt = εt

1−εt
, β = 1

1+
√

2ln n
T

6: The final strong classifier is:

h(x̂) =

{
1

∑T
t=�T

2 � αtht(x̂) ≥ μ
∑T

t=�T
2 � αt

0 otherwise

where αt = ln 1
βt

and μ is a user-defined threshold.
7: end for

204 true craters and 292 non-crater examples selected ran-
domly from amongst crater candidates located in the north-
ern half of the east region. Thus, the training set uses only
3.75% of the total data set. Note that we have purposely
restricted the locations of examples in a training set to a
specific sector of the image in order to mimic actual plane-
tary research; it is likely that in current studies such craters
are identified in a specific region and are in need of iden-
tification by a supervised learning algorithm in the rest of
the image. For the TL algorithm, we have constructed an
additional training set (same-distribution set) consisting of
253 crater candidates (102 true craters and 153 non-craters)
selected from random locations throughout the entire im-
age. The ratio between the false and true examples in the
same-distribution data is proportional to that in the diff-
distribution data ( 153

102
� 292

204
). The original training set

consisting of 496 examples from the northeastern section of
the image serves as the diff-distribution set.

5.3 Supervised Learning
The table shown in Fig. 5 summarizes the performance

results of crater detection by the three algorithms: Boost,
Naive, and TL. The ground truth of the entire image serves
as an external criterion to evaluate the performance of the
three algorithms on the unseen test set. Of the three algo-
rithms, the number of features used to construct a strong
classifier and the values of the threshold μ are selected to
maximize the performance of each classifier.

The candidate data has imbalanced class distribution and
the successful detection of true craters is more significant
than the detection of non-craters. Hence we use recall (r =

TP
TP+F N

) and precision (p = TP
TP+F P

) and F1 as the evalu-
ation metrics. TP stands for the number of true positive
detections (detected craters that are actual craters), FP
stands for the number of false positive detections (detected
craters that are not), and FN stands for the number of
false negative ”detections” (non-detection of real craters).
F1 measures the harmonic mean between precision and re-
call 2

1
r
+ 1

p

. The values of precision, recall, and F1 are listed,

and the best performance of each measure is highlighted in
bold. A precision score of 1.0 means that every object clas-
sified as a crater is indeed a crater but says nothing about
the number of craters that are not recognized by classifiers
as such. A recall score of 1.0 means that every true crater
is classified as such but says nothing about how many other
landforms were incorrectly classified as craters. An F1 score



Figure 6: (A) Kullback-Leibler divergence measures between the set of feature vectors in the original training
set and the sets of feature vectors in the west, central, and east regions. (B) Graphical illustration of F1
scores of the three algorithms. (Best viewed in color.)

Figure 7: Boost versus Naive. X-axis: number of features selected; Y-axis: Performance scores.

of 1.0 means that all the existing craters are correctly identi-
fied and all the objects classified as craters are true craters.

The TL classifier yields the best precision in all regions
and the Naive classifier yields the worst precision in all re-
gions. On the other hand, the Naive classifier has the highest
recall in all regions whereas the TL classifier has the lowest
value of recall, except in the east region, where the Boost
classier has the lowest value of recall. Overall, the TL clas-
sifier has the highest value of F1 in all regions except the
west region where the Naive classifier has the highest value
of F1.

5.4 Comparative Study
We also tested three representative algorithms for the pur-

pose of comparative study: AdaBoost [9] with C4.5 as the
base leaner is used as an example of boosting algorithms,
SVM [4, 13] with a linear kernel is used as an example of
kernel-based learning algorithms, and TrAdaBoost [8] with
C4.5 as the base leaner is used an example of transfer learn-
ing algorithms. Using all the 1089 features, the F1 score of
SVM on all regions is 0.202, AdaBoost is 0.302, TrAdaBoost
is slightly better than 0.4. The huge performance gain by the
three algorithms (Boost, Naive, and TL) has been achieved
by the effective integration of the feature-selection with su-
pervised learning.

5.5 Transfer Learning
In order to better understand the results of three proposed

algorithms, it is useful to assess dissimilarity between the set
of features vectors in the original training set and those in
the west, central, and east regions. Fig. 6A shows such dis-
similarity as measured by the Kullback-Leibler divergence
[15]; Fig. 6B plots the F1 scores graphically of 3 regions.
Clearly, the central region is most dissimilar to the train-
ing set, whereas the east region is the most similar (since
the training set was selected from the northeastern portion
of the image). This is why the TL classifier performs best
(relatively to other classifiers) in the central region. It is ex-
pected that the TL classifier would have the least advantage
in the east region, as it is the region best characterized by
the training set, but the results shows that the TL classifier
has the smallest gain (if any) in the west region. This can be
explained by the fact that the west region has a similar char-
acter to the east region, but is much more heavily cratered,
so in fact, relatively fewer additional training samples come
from these regions resulting in no sufficient information gain
to be exploited by the TL classifier.

The Naive classifier performs surprisingly well considering
its simple nature and low computational cost. We took an
in-depth look into the performance of the Boost and Naive
classifiers on the northeastern section of the image contain-



Figure 8: Top 6 features selected by Naive, Boost, and TL, respectively

ing 1406 crater candidates of which 496 constitute a training
set for both algorithms. Fig. 7 shows the precision, recall,
and F1 for these classifiers as a function of the number of
features selected to construct a strong classifier. The Boost
classifier clearly outperforms the Naive classifier on F1 and
precision measures if more than 100 features are selected.
However, the recall measures of the two classifiers remain
comparable regardless of the number of selected features.
Thus, the Boost classifier is superior to the Naive classifier
on crater candidates that closely resemble those in the train-
ing set, but that disadvantage decreases and/or disappears
when classifying crater candidates that are less similar to
those in the training set. We link the relatively small ad-
vantage (or lack of advantage) of the Boost classifier over the
naive classifier to the peculiarity of image texture features
in the context of crater detection. Top features (weak clas-
sifiers) are actually quite strong performers by themselves
capable of achieving an F1 score as high as 0.81. These
features limit the advantage of the boosting algorithm that
works best with an ensemble of weak classifiers.

5.6 Feature Selection
It is instructive to compare top features (weak classifiers)

selected by each of the three classification algorithms (Naive,
Boost, and TL). Fig. 8 shows six top features selected
by each algorithm. The top two features selected by the
three algorithms concentrate on the transition between the
shadow and the highlight which best define the characteris-
tics of a cater, but there are significant differences between
other selected top features. Features selected by the Naive
algorithm are relatively strong by themselves. Most of them
utilize the transition between the shadow and the highlight
to distinguish craters from no craters. While the next best
feature selected by the Boost algorithm always attempts to
correct mistakes done by the previous feature. Fig. 9 il-
lustrates how the second best feature selected by the Boost
algorithm corrects the mistakes by the first best feature, and
we can observe that this feature performs well on candidates
with shifted shadow regions. Not all top features selected
by the TL algorithm utilize the transition between shadows

and highlights, but rather crater rims. This indicates the
new test data has different characteristics on crater edges.

Fig. 10 displays the results of the TL algorithm, using
top 150 features and the threshold μ = 0.500. Notice that
the large craters ≥ 5000−meter in diameter are intentionally
not detected as we set the parameters of our algorithm to
target small sub-kilometer craters (large craters on Mars
have already been identified manually [3]).

Our methodology is relatively fast. Using a machine with
2 CPUs, 3.16 GHZ, 8GB RAM it took 360 seconds to gener-
ate crater candidates in the test image. It took, on average,
5 seconds to classify 13,075 candidates using a pre-trained
classifier. The total computing time is around 365

3000∗4500 = 27
microseconds per pixel.

6. CONCLUSIONS AND FUTURE WORK
The aim of this paper is to present a robust and prac-

tical framework for auto-detection of small craters in high
resolution images of planetary surfaces. This is one of the
most challenging problems in planetary science—effective
and automatic crater detection from extremely large or-
biter images. The framework uses an innovative method
that integrates improved techniques on three key compo-
nents: identification of crater candidates, embedding feature
selection with supervised classification, and transfer learn-
ing. First, we have demonstrated that our method identifies
craters with high accuracy. The test site is an HRSC im-
age of Martian scene that presents a heterogeneous region
of 37, 500 × 56, 250 m2 and craters in various forms which
are challenging for detection using regular algorithms. Our
method can achieve an F1 score of 0.851; an algorithm with
such performance can definitively be used in planetary re-
search. Second, we have demonstrated that a consistently
accurate detection can be achieved with a minimum cost
through transfer learning. Without transfer learning the
performance of our algorithms (Boost and Naive) decreases
in the central region of the image where surface morphology
differs as characterized by the training set. However, using
the TL algorithm partially restores the level of performance.
Third, we noticed that the Naive algorithm can perform well



Figure 9: The second best feature selected by the Boost algorithm successfully classified 6 misclassified
examples using the first best feature.

Figure 10: Craters (<= 5000-meter in diameter) detected in a 37, 500× 56, 250 m2 test image. (Best viewed in
color.) Green: True detections, Red: False detections.



in the context of crater detection for a fraction of the cost
of the Boost algorithm.

We contend that the robustness and practicality of our
methodology make its utilization in planetary research likely.
If adopted, our method has great potential to produce sur-
veys of small craters over entire surfaces of planets, thus rev-
olutionizing certain aspects of planetary science. Our future
research will address means of efficient selection of additional
training samples for construction of the same-distribution
for transfer learning. The goal is to intelligently select sam-
ples that exemplify differences between the existing training
sets and new candidate sets.
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