
Prediction Gradients for Feature Extraction and Analysis from
Convolutional Neural Networks

Henry Z. Lo, Joseph Paul Cohen, and Wei Ding
Department of Computer Science, University of Massachusetts Boston, Massachusetts, United States

Abstract— Despite their impact on computer vision and
face recognition, the inner workings of deep convolutional
neural networks (CNNs) have traditionally been regarded as
uninterpretable. We demonstrate this to be false by proposing
prediction gradients to understand how neural networks encode
concepts into individual units. In constrast, existing efforts to
understand convolutional nets focus on visualizing units and
classes in pixel space, often using optimization. Our method for
calculating prediction gradients is very efficient, and provides
an effective technique to rank and quantify importance of inter-
nal units and their learned features based on the unit’s relevance
to any prediction. We use prediction gradients to analyse the
features learned by a CNN on a standard face recognition data
set. Our analysis identifies strong patterns of activation which
are unique for each identity. In addition, we validate the rating
produced by prediction gradients to remove the most important
features of the network, knocking out their respective units in
the network, and demonstrating detrimental effects on network
prediction. Our experiments validate the utility of the prediction
gradient in understanding the importance and relationships
between units inside a convolutional neural network.

I. INTRODUCTION

Deep architectures have made great strides in image un-
derstanding. Krizhevksy’s landmark performance on the Im-
ageNet Large Scale Visual Recognition Challenge (ILSVRC)
validated convolutional neural networks (CNNs) in particu-
lar, leading to all subsequent submissions using variants of
CNNs [8], [10]. This success is punctuated by the fact that
ILSVRC consisted of millions of images and one thousand
classes, and is perhaps the largest challenge of its kind
[12]. These advances have since spread to many domains,
including face recognition and detection [9], [7].

The CNN uses serially stacked generalizations and shared
weights to drastically reduce the number of learned parame-
ters [11]. The last layer of the network is typically a logistic
regression or softmax layer, a linear classifier; that this works
suggests that all other layers exist only to learn a useful
feature vector for the classification task. This realization has
led to representation learning becoming a synonym for deep
learning [2].

Despite the crucial importance of these features, how these
features are internally represented is widely regarded as
uninterpretable. This ”black box” nature of neural networks
is one of the technique’s common criticisms.

This work was supported by the Sanofi Genzyme Doctoral Research
Fellowship, the College of Science and Mathematics Dean’s Office at
the University of Massachusetts Boston, and partially supported by the
Department of Energy (# E2024282) and the National Science Foundation
Graduate Research Fellowship Program (# DGE-1356104).

Fig. 1. Convolutional outputs for three images. For each face in the left
column, the images in the right show the output of each convolutional filter.
Rows represent layers. Note that some units have become unresponsive.

In fact these internal representations are interpretable.
We demonstrate an efficient technique for evaluating the
importance of features learned by units in a neural network
by looking at activations. Using the prediction gradient, we
are able to rank feature importance, not only overall, but also
with respect to given classes.

Existing attempts to understand convolutional neural net-
works have focused on visualizing units, layers, and classes
back into pixel space; for example, in Figure 1. This ap-
proach reveals little insight into how the neural network
encodes the image as a function of its units. However,
knowing the usefulness of units can help with understanding
how concepts are distributed in a neural networks.

We show that the prediction gradient can be used to
understand what happens inside a convolutional net in two
ways. First, we use it to visualize activation patterns in a
convolutional net, and show that similar classes often induce
similar unit patterns. Second, we demonstrate the method’s
effectiveness in identifying features in a network. By re-
moving identified ‘strong‘ units, we show that performance
degrades much faster than removing identified ‘weak‘ units.

Our contributions are:
1) An efficient technique for measuring the importance of

any unit in a deep neural network, using the prediction
gradient, class gradient, and convolutional gradient.

2) With these gradients, a demonstration that different im-
ages of the same class show related activation patterns.

3) Extraction of strongest and weakest features using the

Symbol Meaning
o`a Output of ath unit in `th layer
yj Output vector of neural network for jth input
w`

ab Weight from ath unit in (` − 1)th layer to the bth unit
in the `th layer

ti Identity of ith image
Xt Set of all images sharing the label t
L Loss function

TABLE I
NOTATION USED IN THIS PAPER. SUPERSCRIPTS AND SUBSCRIPTS MAY

BE OMITTED WHEN ONLY CONSIDERING ONE COPY OF A SYMBOL.

proposed method, which is validated by their direct
effect on network performance.

II. RELATED WORK

Existing work seeks to understand convolutional nets in
terms of pixel space. To our knowledge this is the first
paper to investigate how to understand convolutional network
concepts in terms of its units.

Erhan et al. visualized convolutional neural nets by finding
the pixels in input space which maximize the activation of a
given unit [6]. The authors also propose a sampling method
from deep belief networks.

Zeiler and Fergus visualized the concepts learned in each
unit of a network using deconvolutional net [15]. These
networks are optimized to reproduce the input given a unit’s
activation [16].

Simonyan et. al. visualized object classes by backpropa-
gating class predictions back to the input pixel space. They
also proposed a method for identifying the pixels of a given
image relevant to its object class [13].

Donahue et. al. compared several different dimensionality
reduction methods on the high dimensional feature space
generated at any given layer of a deep network, and proposed
a method which selects image segments from pixel space to
visualize the network [5].

Erhan and Zeiler’s methods both map a single unit back
to pixel space. Simonyan’s methods visualize object classes,
also in pixel space. Our proposed method seeks to understand
object classes in terms of units in the convolutional network.

We propose a fast method for ranking and evaluating units
in a neural net, which requires no additional optimization. By
providing a single number for each unit, our method quantiti-
vately measures each unit’s contribution to a class prediction.
In contrast, existing methods only visualize the contribution
of a single unit by mapping back to pixel space, and several
require nonconvex optimization. Furthermore, our measure is
flexible, as it allows unit / feature importance to be calculated
with respect to a given class input, prediction, or overall.

III. PREDICTION GRADIENT

The notation used in this paper is shown in Table I.

A. Prediction Gradient
We use the prediction gradient to quantify a unit’s rele-

vance for a given prediction:
∂y

∂o
=

〈
∂y1
∂o

, . . . ,
∂y|T |

∂o

〉
(1)

This vector measures how much the unit o contributes to
the final output y for a given image. The ith element of the
prediction gradient refers to the change in predicting class i
due to varying o.

In our analyses, we focus what makes the network predict
correctly, so we investigate the element yi where i = t is
the face label. The other elements of the prediction gradient
provide insight into how unit o contributes to misclassifying
the image. This may be of interest in understanding why the
network makes certain mistakes.

B. Calculation
One major advantage of using the prediction gradient is

that it can be calculated very quickly. We will show that
prediction gradients are already calculated as an intermediate
step during backpropagation. Thus, obtaining all the predic-
tion gradients of a dataset is relatively simple, and no slower
than one epoch of training.

Let L be an loss function which depends on y. Given one
image, online backpropagation will update weight w`

ab using
this equation:

w`
ab = w`

ab + λ
∂L

∂w`
ab

The weight w`
ab feeds into unit o`b, and thus the error

attributable to o`b must be calculated before the error at-
tributable to w`

ab can be determined. Mathematically, this
becomes apparent after applying the chain rule:

∂L

∂w`
ab

=
∂L

∂y

∂y

∂o`b

∂o`b
∂w`

ab

(2)

Thus, the prediction gradient is already calculated in the
course of learning, and requires no additional effort to obtain.

C. Class Gradient
To quantify unit relevance to each class label, we use the

class gradient, which is the average prediction gradient over
all images of the same class t:

1

|Xi|
∑
j∈Xi

∂yj

∂o
=

1

|Xi|
∂

∂o

∑
j∈Xi

〈
yj1, . . . , y

j
nc

〉
(3)

Equation 3 shows that the average prediction gradient
is equivalent to the gradient of the average prediction. In
practice, we found that calculating the class gradient in this
way is easier to parallelize.

For some datasets, averaging may be problematic if the
elements of a class are not sufficiently smooth, that is,
if different images of the same class have very different
activation patterns. We show later that this is not the case
for our data set.

The class gradient is useful in understanding how the
neural network perceives all images of each class, rather than
how it predicts one specific image.

D. Convolutional Gradient

In this paper, we focus on the class gradients of the
convolutional layers in a convolutional neural network. Each
layer can be thought of as a mode-4 tensor W `:
• Mode 1 corresponds to the different feature maps.
• Mode 2 corresponds to the different channels of the

layer’s inputs (e.g. one channel for each convolutional
output in the low layer).

• Mode 3 and 4 correspond to the 2-d convolutional filter
location in the image.

Sharing this weight tensor W ` are many units: the amount
is the number of valid input pixels times the number of
feature maps. All units of a feature map arguably correspond
to a single feature, so we quantify the importance of this
entire set of units by aggregating all units in a map using
the Frobenius norm. We call this the convolutional gradient.
δ`a is the ath convolutional gradient in the `th layer.

By aggregating, the convolutional gradient removes spatial
information in a feature map. However, as we want to quan-
tify the importance of a feature map, there is no way to avoid
this. If we wanted to take into account spatial information,
we could use prediction or class gradients instead.

The convolutional gradient is not a true gradient, and so is
not directly comparable to the non-convolutional prediction
gradients. However, it is a useful quantity to compare among
feature maps.

IV. EXPERIMENTAL SETUP

We use the gradients discussed to investigate an inten-
tionally small network and data set to aid interpretability of
results. Using a learned convolutional network, we do the
following:

1) Identifying activation patterns relevant to correct class
prediction, and show that these are relatively stable for
different images in the same class.

2) Ranking and rating units in a neural network, to
observe how the network understands face identities.

3) Validation of the measure of unit contribution by re-
moving the strongest / weakest features, and observing
the effect on performance.

Our goal is to demonstrate a measure of relevance of each
unit to correct prediction. Our activation patterns, feature
rankings, and knockout experiments support one use of the
gradients, but there may be others. The purpose of the
analyses is to demonstrate the utility of the class gradient,
and hence we use a simple data set and neural network to
maximize interpretability.

A. Model

We use a convolutional neural network similar to LeNet
[10], but with the following parameters:
• 3 convolutional layers, with 5, 8, and 10 feature maps.
• One hidden layer with 20 units.
• Hyperbolic tangent activation functions.
• 5× 5 convolutional filters for all convolutional layers.
• 2× 2 max pooling for all convolutional layers.

Input images are resized to 60 × 60 pixels. The learning
parameter is set to 0.1.

B. Data
To facilitate learning on our network, we use the Yale face

database1, which consists of face images of 15 identities in
11 different conditions [1]. 75% of the data set is used for
training, and 25% for testing. The network was trained on
15 classes, one for each identity.

Training was done for 250 epochs, after which the network
achieved an error rate of 4.88% on the data set. Weights for
the network were frozen after this, and no more training was
done.

V. GRADIENT ANALYSIS

We demonstrate the utility of the prediction gradient by
example. Using on a CNN trained on a face recognition
data set, we show how the prediction gradient can be used
to understand the inner workings of a neural network, and
to identify useful and non-useful features relevant to class
labels.

A. Prediction Gradient Consistency
In order to use the class gradient for analysis, prediction

gradient patterns must be similar among members of the
same class and different between classes. Otherwise, aver-
aging these over the class would be meaningless.

In Table II, we conducted a preliminary investigation
to see whether this condition is fulfilled. Shown are three
different identities, under three different conditions. To the
right of each image are the convolutional gradients for
each convolutional feature map. The whiter the circle, the
higher the convolutional gradient for that feature map. Black
corresponds to a gradient of 0.

We can see that which units have the highest gradients
stays quite similar across different faces of the same identity.
In other words, each person has a distinct gradient profile of
which units contribute most to detecting that face.

B. Gradient-Based Feature Selection
The convolutional gradient can be used as a measure of a

unit’s effectiveness in producing a certain network outcome.
Hence, it can be used rank the internal features of a neural
network in terms of importance.

In Table III, we use the convolutional gradient to identify
the top 8 strongest and weakest features for each of five
identities. We average these features across different images
of the same identity. Note that as the gradients are different
for each identity, each identity has a different set of strongest
and weakest features.

The values for these convolutional gradients are shown,
and all convolutional gradients are visualized in the network
diagram in the third column. We note that there is a high
variability in the value of the gradient. For example, identity
15’s gradients are much higher than identity 14’s. Thus,
in our network visualizations, we normalize based on the
highest gradient in the network.

1http://vision.ucsd.edu/content/yale-face-database

Identity 1 Identity 2 Identity 3
Image Network Image Network Image Network

TABLE II
PREDICTION GRADIENTS FOR THREE IMAGES EACH FROM THREE IDENTITIES. THE DIAGRAM IN THE NETWORK COLUMN THE THREE

CONVOLUTIONAL LAYERS OF THE NEURAL NETWORK. EACH CIRCLE IS A FEATURE MAP. BRIGHTER CIRCLES INDICATE A HIGHER PREDICTION

GRADIENT FOR THAT FEATURE MAP. NOTE THE PATTERNS IN PREDICTION GRADIENTS WITHIN EACH IDENTITY.

C. Gradient-Selected Feature Evaluation

To see whether the features ranked by the network are
indeed the most and least useful, we knock out these units in
the neural network and see its effect on network performance.

Specifically, for each identity (we use identities 7, 10, 12,
14, and 15), we find their top 10 strongest features. Then for
each of these features, we set the output of the corresponding
unit corresponding to 0 (knocking it out). We then run the
modified network to evaluate its performance. The effects
of the knockout are cumulative; e.g. at the first iteration we
knock out the best feature, then we knock out the best 2
features, etc.

We evaluate network performance in two ways. First,
we measure class error by only testing the network on the
identity whose strongest features were extracted. Second, we
measure overall error by testing the network on all identities.

Finally, we do this same experimental procedure for the
20 weakest features. We use the entire Yale data set, not just
the test set.

D. Gradient-Selected Feature Results

Knockout experiment results are shown in Figure 2.
It is evident that removing three or more of the strongest

features strongly impact network performance. There seems
to be some robustness to the network, in that it can handle
minor damage and still classify well. This robustness depends
on the identity; e.g. the network fails to recognize identity
12 after removing 4 units, but only fails on identity 10 after
removing 8.

Performance on recognizing all identities seems to degrade
at a slower rate that recognizing a single identity, at least for
the top features for identities 10 and 15. Regardless, all of
the strongest feature near 100% error after removing 10.

Removing the weakest units seems to have an odd effect
on class performance. For most of the weakest feature sets,
error gradually increased as features were knocked out, but
the pattern is not certain. For example, error for identity 12
increased drastically after removing the 7 weakest features,
but then dropped again after removing two more. This
suggests that some of the weak features, or sets of weak
features, actually hurt network performance.

Overall performance degrades very slowly when removing
features from the weakest first. The network almost com-
pletely fails after removing the top 10 strong features for
any identity. In contrast, after removing 10 weak features,
the network still achieves less than 25% error. Even after re-
moving 15 weak features, overall error for many of the weak
feature sets is below 50%. This is remarkable, considering
that there are only 23 convolutional features.

Misclassifications for the knockout procedure can be seen
in Figure 3. The strongest features for identity 7 were used.
The colored lines in this image show the true class label,
while the rows show the mode predicted class label. Inter-
estingly, 7 is not the first identity to be grossly misclassified.
As the network degrades, identities become more difficult
for the network to distinguish.

E. Identifying Problematic Units

The performance patterns in Figure 2 suggests that weak
features for a given class are often weak overall. These units
may have become saturated, or fit to noise [3], as often
happens with deep networks. Irrelevant features often hurt
accuracy [14], [4], so it is important to identify units as they
arrive at this state.

From the convolutional images in Figure 1, it seems that
feature 1 in layer 1, feature 4 in layer 2, and feature 2 in

ID Image Network Strongest Features Weakest Features
Layer Unit Gradient Layer Unit Gradient

15

1 5 0.25153 3 2 0.03227
2 3 0.23269 3 6 0.03676
3 8 0.21675 3 3 0.09039
1 2 0.21362 3 9 0.10847
3 1 0.20919 2 4 0.10995
2 6 0.20612 2 2 0.12622
2 5 0.19961 3 4 0.13164
1 3 0.19855 1 1 0.13169

14

3 5 0.00202 3 2 0.00025
3 7 0.00167 3 6 0.00052
3 10 0.00158 2 4 0.00055
3 3 0.00136 1 1 0.00057
3 4 0.00125 2 2 0.00063
3 1 0.00121 2 7 0.00075
3 9 0.00117 2 1 0.00076
2 8 0.00102 2 3 0.00077

7

1 5 0.02247 3 6 0.00728
3 1 0.02029 3 2 0.00951
1 3 0.01951 3 9 0.00977
2 6 0.01890 2 4 0.00983
1 4 0.01802 3 3 0.01157
2 3 0.01760 2 2 0.01199
2 8 0.01726 1 1 0.01228
1 2 0.01683 2 7 0.01453

10

3 1 0.00369 3 6 0.00071
1 5 0.00328 3 2 0.00072
3 7 0.00316 2 4 0.00114
2 6 0.00301 1 1 0.00182
1 4 0.00287 2 2 0.00189
3 5 0.00287 2 7 0.00212
3 10 0.00286 2 1 0.00219
1 3 0.00282 3 9 0.00231

12

1 5 0.08089 3 6 0.01925
1 2 0.07403 3 2 0.01964
1 4 0.06849 2 4 0.03013
1 3 0.06410 3 9 0.03074
2 6 0.05959 3 3 0.03077
2 8 0.05814 2 2 0.03345
2 3 0.05761 3 5 0.03780
3 1 0.05623 3 7 0.04417

TABLE III
FIVE IDENTITIES WITH THEIR IMAGES, CLASS GRADIENTS ACROSS THE WHOLE NETWORK, AND TOP 8 STRONGEST AND WEAKEST FEATURES, AS

RANKED BY THE CLASS GRADIENT. THESE FIVE IDENTITIES WERE USED IN THE KNOCKOUT EXPERIMENTS.

Fig. 2. Charts show the effect of removing an identity’s strongest features on network performance. Two types of error are considered - error within the
identity, and error among all images. Left column shows the removal of strongest features one-by-one, and right column shows the removal of weakest
features. Features are rated based on class gradient.

Removed: 0 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig. 3. Visualization of how the neural network misclassifies identities
as the strongest features for identity 7 are knocked out. Lines of different
colors represent subsets of the data representing one identity. A line in a
given row means that the images of the line are most often predicted to be
the identity in the row. At the left, all subjects are correctly classified as no
features are removed yet. As the lines move right, units are knocked out,
and the ability to distinguish between faces is lost.

layer 3 do not seem to detect much. However, it is not safe
to assume this based purely on visualizations.

The low prediction gradients for these features as shown
in Table III confirm that indeed these features have become
irrelevant. In addition to these low-performers, feature 6 in
layer 3, feature 9 in layer 3, and feature 2 in layer 2 are also
low in relevance, though this may not be visually apparent.
Using the class gradient to determine relevance adds certainty
to the judgement of relevance.

VI. CONCLUSION

Utilizing the convolutional gradient, we have extensively
analyzed a convolutional neural network trained on a stan-
dard face recognition data set. The analysis revealed the
following facts about the neural network:
• Stability of representation. Each identity learned by

the neural network corresponds to a sparse activation
pattern, which forms a ”profile” for each given identity.

• Robustness of representation. Even when removing one
or two of the strongest features in a neural network,
its robust internal representation still allows for high-
performance.

• Feature relevance imbalance. As shown in Figure 2,
even after removing half of a weak feature set perfor-
mance remained high. Yet removing more than 3 strong
features resulted in severe performance degradation.

This analysis was made possible using prediction gradients
and knockout analysis. Prediction gradients have the benefit
of being efficiently computable, unlike modern methods
for understanding neural networks, yet non-linear, unlike
traditional measures such as correlation. This method is
applicable not only to convolutional layers as demonstrated
in this paper, but to any output in a neural network, and
thus can yield deep insights into the deep neural network
architectures which have revolutionized machine learning
and computer vision.

REFERENCES

[1] Peter N. Belhumeur, João P. Hespanha, and David J. Kriegman.
Eigenfaces vs. fisherfaces: Recognition using class specific linear
projection. IEEE Trans. Pattern Anal. Mach. Intell., 19(7):711–720,
July 1997.

[2] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Unsupervised
feature learning and deep learning: A review and new perspectives.
CoRR, abs/1206.5538, 2012.

[3] Yoshua Bengio and Xavier Glorot. Understanding the difficulty of
training deep feedforward neural networks. In Proceedings of AISTATS
2010, volume 9, pages 249–256, May 2010.

[4] Joseph Paul Cohen and Wei Ding. Crater detection via genetic search
methods to reduce image features. Advances in Space Research,
53(12):1768 – 1782, 2014. Image Processing and Analysis in Space
Science.

[5] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning
Zhang, Eric Tzeng, and Trevor Darrell. Decaf: A deep convolutional
activation feature for generic visual recognition. CoRR, abs/1310.1531,
2013.

[6] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent.
Visualizing higher-layer features of a deep network. Technical Report
1341, University of Montreal, June 2009.

[7] C. Garcia and M. Delakis. Convolutional face finder: a neural
architecture for fast and robust face detection. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 26(11):1408–1423, Nov
2004.

[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet
classification with deep convolutional neural networks. In F. Pereira,
C.J.C. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in
Neural Information Processing Systems 25, pages 1097–1105. Curran
Associates, Inc., 2012.

[9] S. Lawrence, C.L. Giles, Ah Chung Tsoi, and A.D. Back. Face recog-
nition: a convolutional neural-network approach. Neural Networks,
IEEE Transactions on, 8(1):98–113, Jan 1997.

[10] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, Nov 1998.

[11] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The
MIT Press, 2012.

[12] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet large
scale visual recognition challenge, 2014.

[13] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside
convolutional networks: Visualising image classification models and
saliency maps. ICLR, abs/1312.6034, 2013.

[14] F.J. Smieja. Neural network constructive algorithms: Trading gen-
eralization for learning efficiency? Circuits, Systems and Signal
Processing, 12(2):331–374, 1993.

[15] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding
convolutional networks. ICLR, abs/1311.2901, 2013.

[16] Matthew D. Zeiler, Dilip Krishnan, Graham W. Taylor, and Rob
Fergus. Deconvolutional networks. In In CVPR, 2010.

