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Abstract—Identifying the internal relationships in the data is
the basis of data analysis and prediction. Traditional statistics
methods focus on testing the correlation of variables pairwise.
However, the correlation has rather limited performance on real
causal influence. In this paper, we focus on an interpretable
and visible approach to detect causal relationship networks in
order to study risk factors of older adult falls. Learning the
skeleton of the network is challenging since it is hard to mine
indirect relationships. Variables could have dependence given
other variables. Furthermore, orienting appropriate direction is
tough because real-world data may include hidden information.
Researchers cannot control it like a simulated data set. Here
we propose a method based on the Bayesian causal relationship,
which we call the Time Logic PC algorithm (TL-PC). We use
the TL-PC on the older adults fall application and show the
explainable and reliable time logical causal relationships.

Index Terms—Causal relationship networks, Conditional inde-
pendence, Time logic, Interpretable, Dynamic performance

I. INTRODUCTION

Falls have been detected as one of the most important
causes of death in older adults. Approximately 9,500 deaths
in older Americans are associated with falls each year [1].
Furthermore, falls are also one of the most common causes of
accidental injuries among seniors. It is reported by one-third
of people over age 65 each year [2]. Therefore, identifying the
risk of falls and taking care of older adults with high risk is
very important. To recognize the risk, it is significant to dig
out the relationships behind falls data and understand these
relationships among explanatory variables.

Domain researchers usually use statistical analysis tests to
detect the relationship between their variables, such as using
the t-test to test if they are correlated. However, traditional
statistical tests are very limited on visibility, interpretation, ef-
ficiency, and effectiveness. The model-based statistical method
is very sensitive to the model. It is important to use the specific
model with specific data, which will cause more uncertainty
and cost to researchers. On the other hand, researchers who

do not have a strong background in statistics hardly survive
from the results which only comes with numbers when they
try to understand and explain them. An interpretable method is
much needed to help researches dig out causes of older adults
falls.

Machine learning models, as is well known, are used to
do prediction combining with different domain data set. Most
machine learning models follow data-driven pattern which
means case sensitive [23]. Compared with traditional model-
based statistics methods, the data-driven characteristic can
avoid uncertain errors from the inappropriate model selection.
The elementary goal of these data-driven methods is pursuing
higher precision of the prediction model. Like, the feature
selection technic is one of the most popular approaches to
realize this goal [20]. However, there is no evidence showing
that the best prediction features from machine learning mod-
els are also comprehensible features for domain researchers.
One of the biggest problems is that prediction results from
algorithms are not highly accessible to domain researchers,
especially in health science. For instance, doctors won’t make
a prescription following the prediction of unfamiliar machine
learning models. In this case, understanding the hidden rela-
tionships between features is in higher demand than simply
doing prediction by applying machine learning models. We
note that a good performance of prediction is not equal to
the real causal relationship in the domain. For example, we
know that people who smoke often drink. Based on this
rule, smoking and drinking are correlative variables, whereas
smoking is not the direct reason for alcoholism and drinking
also does not cause smoking. There is no causal relationship
between smoking and alcoholism. In this paper, our goal is
to design and implement a machine learning algorithm that
will not only predict future phenomena with high precision
but also provide an approach for domain researchers to mine
in-depth information on complex interactions.

Using structured networks is a way to perform much



more visible result reports than statistical tests. These types
of reports are more readable and comprehensible. On the
other hand, there always exists interactions between multiple
variables in real-world data. To diagnose and consider rela-
tionships between numerous features sequentially, we use con-
ditional independent test, which follows the Bayesian rule, a
powerful nonparametric method detecting and revealing causal
relationships between variables [21], but considers the effects
from previous variables instead of traditional independent test.

In this paper, we propose Time Logic PC algorithm (TL-
PC), a new application framework of Bayesian causal relation-
ship algorithm, as a combination of the traditional statistical
method and the modern machine learning way. We provide
data-driven patterns and Bayesian rule from traditional statis-
tics together to address current limitations. The motivation of
TL-PC is to provide a visible result to help domain researchers
understand their data and mine more deeply information from
the data in an efficient way. As shown in Fig. 1(c), TL-PC
provides a case sensitive processing learning skeleton structure
from data sequentially. And then applying v-structure and time
logic technique to orient the direction of each adjacent edge.
These directed edges represent causal relationships between
each pair of nodes. With the time logic, the model can provide
more reliable causal relations than the original Peter and Clark
(PC) algorithm.

Moreover, our method is competitive on dynamic perfor-
mance. Fig. 1(d) shows very few differences between the
number of relations at different thresholds. Furthermore, the
number of links always increases when the threshold goes up,
which means that the previous links are steady and will not
disappear if we use a higher significance level. So the relations
detected by our method are robust and reliable. It is possible to
investigate dynamic performance with a different threshold to
identify strong and weak relations. As shown in Figure 1(a)
and 1(b), we propose an ideal relationship structure among
chronic pain, gait, and falls. Then we evaluate TL-PC with
real-world data (see Fig. 1(b) for data collection) to test the
conceptual model of chronic and gait effect on falls.

The major contributions are shown as follows.

• Applying TL-PC algorithm, a method based on condi-
tional correlation test, to detect the causal relationship
between variables from a real-world data set. The time
order rule is also applied as an adjustment factor in the
model.

• Comprehensive results with figures that visualize the
performances, which help identify causal relationships
between variables. Since the results generated by the TL-
PC algorithm based on the conditional independent test
are more convincible than traditional pairwise statistics
methods.

• A way to improve efficiency and effectivity. Our ap-
plication model can provide precise results with less
computational cost.

II. TIME LOGIC PC ALGORITHM

Both traditional statistical methods and data-driven predic-
tion methods limit on dig out causal relations. To deal with
this problem, a combination algorithm, Peter and Clark (PC),
is proposed [4]. The PC applies conditional independence(CI)
test which is from traditional statistics on data-driven iteration
idea. The algorithm can learn information from an individual
sample through statistics CI test. Furthermore, the directed
acyclic graph (DAG) is used to perform the causal relations,
which is provided in an easy understanding way. The PC
algorithm, a computationally feasible and fast approach to
solve sparse problems with a mass of variables, has high
computational efficiency with DAG automatically [22].

Based on the original PC algorithm [4], we propose the time
logic PC (TL-PC) method which considers time order when
generating the causal relationship networks. Our networks
result is more interpretable and reliable than the original PC. A
stable and time logical result is very important for researchers,
especially for health science, since participants always have
some uncontrolled initial features, like gender, when they join
the experiment. In this case, time becomes significant in causal
relations.

To detect causal structure, we have to consider parent
variables in each test step. The PC algorithm updates the joint
distribution of the variables using Bayesian conditional proba-
bility [4]. Instead of the normal independence test, conditional
independence test is applied to decide whether the pair of
variables are dependent. If the conditional probability satisfies
the Eq.(1), the variable A and B are conditionally independent
given C.

P (A,B|C) = P (A|C) ∗ P (B|C) (1)

There are two main steps in the TL-PC algorithm, including
learning skeleton and edge orientation. In the first step, the
TL-PC will follow the original PC [4] return an undirected
graph with all vertices and edges. All the directions will be
given in the second step. The CI test is used to learn skeleton,
while other techniques, v-structure and time logic, is used to
orientate edges. Suppose graph G = (V, E) is an undirected
graph which has V vertices and E edges where {all vertices
of E} ⊆ V.

Definition 1. Adjacency [3]: Vertex A and B are adjacent in
graph G if (A, B) or (B, A)∈ E and (A, B) or (B, A) ∈ G,
called adj(A, G).

For each pair of (A, B) or (B, A) given C, there could be
four different v-structures, 1)A → C → B, 2)B → C → A,
3)A → C ← B, and 4)A ← C → B. These v-structures are
also considered as the core of d-separation (Def. 2) property.
In the first path, A is an ancestor of B, but A doesn’t impact
B directly. It is similar in the second path, where B causes A
indirectly. In the third path, both A and B are parents of vertex
C, however, B /∈ adj(A,G) (or A /∈ adj(B,G)). C is called
collider in this case [3]. There is no connection between A and



Fig. 1. (a) Our conceptual model of chronic pain and gait effect on falls: To investigate the relationships among these three groups, the distraction is added
to create different conditions of walking. And the basic personal information of participants may affect both relationships of Pain-Gait or Gait-Falls. (b) Our
data collection experiment: The picture shows how to collect gait data using the Gaitrite mat. For each kind of simulated walking type, participants are asked
to walk through the mat twice. (c)The flow chart of TL-PC Algorithm: The algorithm begins with a full connection, and the conditional independence
test is used to test the red edge after passing normal independence test. There are two ways to break the iteration, removing the red link or traversing all N.
In this figure, we use the first situation to break the iteration and go to next step. (d) Our theoretical threshold: There is no significant difference between
each threshold. The trend line shows the stabilization of the number of links, including total links, links between different groups and links between the same
groups

B. In addition, the forth path shows that C is the common cause
of A and B. Therefore, given C, there must be a relationship
between A and B since their common ancestor. All three cases,
except the third path, performs the causal connection between
vertex A and B given C, so A and B are d-connecting given
C. While, no causal connection can be found in the third path,
in this case, A and B are d-separated by C. The definition of
d-connection and d-separation are given below (Dif. 2).

Definition 2. D-Separation [3], [5], [6]: In a DAG, vertex A
and B are d-separated by a set of vertices C if there is a path
between A and B, any non-collider on the path is not in C,
or any collider and its descendant are not in C. Otherwise,
vertex A and B is d-connecting by C.

The TL-PC algorithm (the same as PC in step one) starts
with the full connected graph, then for each vertex A testing
the conditional independence of each connection of vertex B
in adj(A,G) \ {B}, where ∀ A, B ∈ V. We will use the
normal independent test to all pair of vertices and remove
irrelevant links first. And then applying the CI test to learn the

skeleton (Algorithm 1). The CI test will be iterated by different
vertices and levels (n) [3]. At the original level (n=0), normal
independence test is used for pairwise vertices. Then at the
first level (n=1), for the all possible subset C of adj(A,G) \
{B}, if it is d-separated then remove the independent edges.
The number of member (size) of subset C equals to n. For
example, when n=0, there is no variable in the subset C, so
we run independent test instead of the conditional independent
test since there is no conditional factors. The iteration will
be terminated when the number of adj(A,G) \ {B} is less
than the level’s number. If the number of required conditional
variables (n) is greater than all linked variables in DAG, in
this case, the algorithm is broken.

The second step of TL-PC is to orient all edges that survive
from Algorithm 1. We use a set R to record an ordered pair
of variables which represents the directed edges. The ordered
pair of vertices (A, B) belong to set R if we have A→ B. If
a vertex C connects with both vertices A and B respectively,
but A and B are not adjacent, we can decide the direction as
A→ C ← B, if A and B are d-connecting given C. It is easier
to decide this collider structure since it is the only direction



Algorithm 1 Learning the Skeleton from CI Test
Input: Data set D with V variables and the significant level
α

Output: Undirected graph G with V variables and E edges
Connect all vertices (A, B) ⊆ V*V
Set n=0
for each pair of (A, B)∈G do

Test I(A,B)

if I(A,B) then
Remove the edge between A and B
Update G and E

for each ordered pair of adjacent (A, B)∈G do
Set n=1
repeat

if SIZE (adj(A,G)\{B}) >n then
for each subset C ⊆adj(A, G)\{B} do

if SIZE (C) = n then
Test CI(A, B|C)
if (A, B) is d-separated by S then

Remove the edge between A and B
Save C in Sepset(A,B) & Sepset(B,A)
Update G and E
Break

n=n+1
until SIZE (adj(A, G)\{B}) 6 n

if we know A ⊥ B but A and B are not independent given C
[4]. However, for non-collider vertices, it is hard to decide the
direction since there are three different v-structures satisfied
the result from the CI test.

After orienting collider vertices by using v-structure, the
original PC propose two rules to deal with other edges in G
based on the previous DAG [4]. First, if there is a directed
path from A to B (it could include other vertices in the path),
and B ∈ adj(A, G), we orient the edge between A and B as A
→ B. Second, if A directs to C and there is a link between C
and B, meanwhile, A and B are separated, the edge between
C and B can be oriented as C → B. On the other hand, since
the result is DAG, there are two more rules, 1)it is impossible
to get any directed cycles in G, 2)no more v-structure should
be formed. It is possible that some of the edges cannot be
oriented by these rules. We propose to apply time logic to G.
With this technique, some uncertain direction will be directed
and some unsure direction will be revised.

Definition 3. Time Logic Causal Relationship: A relationship
between two phenomena is time logic if the cause independent
phenomenon happening precedes the effect dependent phe-
nomenon in time.

In general, if a phenomenon (A) could cause another one
(B), we call A has the causal effect on B, or we say the A is
the reason of B. For example, considering an education case,
the credits of one student leads to whether he/she can graduate.

We say the credits have the causal influence on graduation.
The Gaussian conditional independent test is applied to

diagnose the causal relationships, but the direction of rela-
tionships is decided by v-structure in DAG. However, with the
real-world relations, the v-structure method is not considered
as powerful as people’s brain to address all complex relation-
ships. It is easy to find a way to decide the direction of a
cause-effect relationship from domain knowledge or common
sense. But the core of this task is to find the causal relations,
which is much more difficult than the direction. Therefore,
after obtaining the causal relationships from PC, we implement
the time logic relationship rule (Def. 3) to the original DAG
and update the direction of part of edges in G. Every node in
G has a happened time t, where t∈T. According to t, we can
revise the DAG by time logic rule.

With the time logic rule, the phenomenon previously hap-
pened only can be the efficiency factor of other later phenom-
ena. Again, considering the example of graduation and credit
grading, if the algorithm shows the direction like from gradua-
tion to the credits of a student, obviously, it is against the time
logic relationship rule. Students cannot graduate before he/she
is graded since grading must happen before graduation. In this
case, based on the time logic, the only possible direction is
from credits to graduation [7]. The newly generated time logic
causal relationship networks (TLCRNs) following the time
logic shows better performance of interpretation and reliability.
The second step of TL-PC is shown in Algorithm 2 which
following the original PC [4] at the beginning.

Algorithm 2 Orientation of G from Algorithm 1
Input: Undirected graph G with V variables and E edges
Output: TLCRNs G with V variables and DE directed edges

for each triple vertices set A, B and C in G do
if C∈adj(A, G)\{B} & C∈adj(B, G)\{A}

& A/∈adj(B, G) & C/∈Sepset(A, B) then
Save (A, C) and (B, C) in R

Update G and DE
for each ordered pair of vertices (A, B) in G do

if A sequence of ordered pair from A to B in R
A∈ adj(B, G) then
Save (A, B) in R

if (A, C)⊆R & B∈adj(C, G) & B/∈adj(A,G)\{C} then
Save (C, B) in R

Update G and DE
for each ordered pair of vertices (A, B)⊆R;

tA, tB ∈ the set of time T do
if tA > tB then

Remove (A, B) from R, and save (B,A) in R
Update G and DE

III. REAL-WORLD APPLICATION
ON OLDER ADULT FALLS

From previous research, chronic multisite pain is a potential
influence factor of falling in older population [8]–[10]. Chronic



multisite pain is one of the most common disabling conditions
affecting older adults. Although pain may have different
origins and presentations, it causes significant inconvenience
and limited mobility for senior people. Furthermore, falling
is not only impacting older people’s quality of life but also is
one of the most important causes of death among older people
[11]. Fall-induced injuries may cause death directly, such as
head injuries, and also may cause serious complications. These
complications usually happen if the participant is bedridden
as a result of the fracture, such as bedsore. In this case, it is
necessary to find the influence factors which cause a high risk
of falling in older persons.

Our study is designed to detect the relationship between
chronic pain and falls in the older population, both of which
are highly prevalent in older people. People did not recognize
chronic pain as an important factor of falls in older adults until
2002 [12]. More recently, population-based research in the
general population of older adults showed risk for falls related
to pain, regardless of how pain was assessed [13]. Interestingly,
there is no evidence showing that a specific single location
of pain would increase falling risk. For example, lower body
pain was not observed to confer more risk than upper body
pain. However, as in the example about smoking and alcohol,
correlative variables do not always have causation. Although
previous studies find the correlative relationship between pain
and falls, understanding the causal relationship is essential and
would be very helpful in multi-factorial fall prevention.

We propose applying machine learning techniques to detect
the real networks of pain and falls. Examining pain variables
and falling variables is not sufficient since falling only happens
when people are upright. If we directly test the relationship be-
tween chronic pain and falls, the influence of factors performed
during walking would be ignored. To solve this problem,
we consider adding gait parameters to describe how people
walk and also add variables about their personal information.
We believe these “assistant” variables are able to help us to
discover authentic causal relations between pain and falls. In
addition, the results of our experiments, due to the design of
the TL-PC framework, are visible and easily understood.

A. Data Set Description

Our study participants are 203 women and 111 men aged
from 71 years to 101 years in the MOBILIZE Boston Study
II. The experiment covers all these 314 people, and each of
them walked on the Gaitrite mat 6 times. Although some of
records are missing, we have 1857 sample walks (27 missing
records). There are 23 features in the Older Adult Falls data
set. The details and explanation are in Fig. 2.

The dataset contains 13 gait features, 1 distraction feature,
4 personal information features, 3 pain features, and 2 fall
features. Fall features refer to TOTFY (total follow-up years)
and TOTFalls (total number of falls). In the period of TOTFY,
participants would be investigated monthly and the number
of falls would be recorded cumulatively. The TOTFY of
each participant is varied. For example, one participant is
tracked for 4.33 years, whereas another participant is followed

Fig. 2. The Description of Data Set (L and R represent two individual
variables, so there are 23 variables in total)

only 1.82 years. Personal Information features include each
participant’s profile, representing individuals’ characteristics
and specific circumstances from different perspectives. Gait
features describe how the participants walk. We use the
Gaitrite mat and wearable sensors to collect 13 gait features
from (see Fig. 1(b)). Distraction feature describes 3 walk
types: quiet walk, dual tasks easy and dual tasks hard, which
are expressed as 0, 1 and 2 to simulate peoples daily gait
status in different situations. The quiet walk is walking without
any distraction. Participants only focus on walking in this
case. For the dual tasks, participants walk with a low or high
degree of cognitive distraction. We ask each participant to
count backward from 100 by 1 for the easy dual tasks and
count backward by 3 for the hard task. Pain features describe
how the participants feel pain and the sites of pain. Among
them, chronic pain assessment and gait measure are needed
to be described in the details. We used a questionnaire within
13 items about joint pain to assess chronic musculoskeletal
pain in hands shoulders, back, chest, wrists, knees, hips, and
feet [14]. This measurement appoach was used in the Womens
Health and Aging Study [17], [18]. Gait measure were divided
into 2 conditions: single task walking and dual tasks with
a challenge to cognitive attention. To do the gait testing,
we used a GaitRite mat(CIR Systems Inc, Havertown PA)
with pressure sensors inserted and distributed. Previously, the
Gaitrite mat performed dependably for most spatiotemporal
gait parameters in older people [15]. The mat was 16-foot long
and 3-feet wide, and measured the characteristics and timing
of individual steps. Then we used these variables to calculate
spatio-temporal gait parameters: stride length, stride time and



swing time, which are necessary for the outcome measures of
variability. The calculation of these parameters is based on the
individual gait cycle, from the time when one foot touches the
floor until the same foot touches the floor again. The stride
length is the distance of one complete gait cycle; the stride
time refers to the timing of a complete gait cycle, and swing
time is the amount of time that the foot is in the air for each
step (secs). These gait measures have been verified and used
in gait assessment research previously [16].

B. Specific Targets

In the past two decades, there are a lot of researchers
investigating the role of mobility and balance in fall risk in
older adults. Obviously, balance has a strong relationship with
falls since if people lose balance they would fall. In this case,
we believe mobility, at least, will be an influential factor of
falls. That is why we measured gait features, which could
describe the mobility of persons. On the other hand, chronic
pain is a factor which imposes restrictions on walking [19].
Limited mobility causes different ways of walking, as well as
gait, and then leads to different levels of falling risk. Therefore,
gait was considered as a bridge connecting two interesting
appearances, falls and chronic pain. Our primary target in this
paper is providing a way which can build a precise pathway
between chronic pain and falls.

We designed to test the sequential conditional independence
between falls and chronic pain. As the flow chart shown
in figure 1(a), gait is an underlying influence factor of the
relationship between pain and falls. In this case, gait data
was collected to test whether the relation of gait and other
two groups of features exists in older adults. In general, our
specific targets are the following.

• The relationships between Pain and Gait: To inves-
tigate whether chronic pain results in different perfor-
mances in gait variables.

• The relationships between Pain and Falls: To inves-
tigate whether chronic pain results in different perfor-
mances in the occurrence of falls.

• The relationships between Gait and Falls: To inves-
tigate whether different performances in gait lead to
increased variability in the risk of falls.

IV. EXPERIMENTS

In this section, we present the experiment results from our
application to older adult falls. We provide both interpretable
directed causal relationship network and numeric possible
total causal effects to support the explanations in a real-world
related task. In particular, we illustrate the core relationships
between variables in the task. All three specific targets (the
causal relations of Pain-Gait, Pain-Falls, and Gait-Falls, re-
spectively) are discussed and evaluated from both the technical
and domain view.

A. Experiment Setup

From data collection, we, totally, have 23 features (Fig. 2)
in the Older Adults Falls data set. We use all of these features

but apply some pre-processing to prepare data. We generate a
normalized variable, Fall Rate, which is from TOTFalls and
TOTFY using Eq.2.

Fall Rate = TOTFalls÷ TOTFY (2)

In this case,regardless of the starting point and missing point of
each individual in the older Adults Falls study, all information
behind observed value is converted into only one powerful
feature.

One of the primary goals of our task is providing a readable
result to all researchers with or without strong academic
training in statistics. To reduce the quantities of features
can extremely increase the performance of an explanation.
However, to pursue the degree of precision, as more as valued
features should be considered in the model. It is tough to find
an appropriate balance between these two opposite challenges.
In order to address this, we utilize average values to replace
all gait features except Gait Spd which is only one kept
as original. All other 6 gait features (including Step Time,
Step Len, Stance Time, Swing Time, DblSupp Time, and
Stride Time) are measured with the left foot and right foot,
respectively. So in the original data set, there are 12 features,
such as Step TimeL and Step TimeR etc. For instance, in-
stead of Step TimeL and Step R, We propose to use one
feature, Step Time ave (average), which can represent the
entire body movement. In general, there is no significant
difference between the performance of individual foot and the
whole body in gait recognition. On the other hand, in statistics,
equalization is one of the most important technique to realize
the measure of central tendency of a probability distribution.
This procedure makes the data farther follow the Gaussian
distribution which is similar with the population (extremely
big data) distribution in the real world.

B. Time Logic in Older Adults Fall Program

In our Older Adults Falls data set, there are five different
groups of variables (Fig. 2). It is worth noting that the
group of personal information (PI) contains all default profile
variables for the participants in our data collection step. For
example, the gender of participants is considered a fixed
variable, having occured before our experiment. So, every
change of independent variables in the PI group should happen
before participants join our experiments. As all causal effects
determined by our experiments must follow the time order
rule, the only reliable direction is from PI to all other groups
since default variables always occur at the very beginning.

Moreover, we record falls after all data collection process-
ing, which leads the variable Fall Rate to be the last effect
dependent variable. All activities of data collection precede the
investigation of falls in time. So Fall Rate only can perform
the role of the result of variables from other groups, such as
pain, gait, and distraction. Another interesting group following
the time order rule is the group of distraction. This group is
designed and controlled by researchers when they collect gait
data. In this way, distraction must be the cause of variables
from gait group. But there is no influence on other groups.



Fig. 3. The Possible Time Logic in Groups

Otherwise, we cannot detect more time order relationships
between the 5 groups. It could be any direction of the causal
relationships among these groups. Every event can happen
before or after another one, which means it can be the cause
of result of any other variables.

All possible time order relationships are shown in Fig. 3
where the direction of arrows represents the time-order-based
causal effects. Variables without links mean that there could
be any kind of relationship in the pair.

C. Dynamic Performance of Relations

In the experiments, we generate the time logic causal
relationship networks plot based on the Gaussian conditional
independence test. To evaluate the stability of relations, we
set the significance level for the tests (α in the algorithm)
in a sequence of 0.05, 0.1 and 0.2. As in Fig. 1(d), there
is no significant difference shown under different thresholds.
Only a few distinctions can be detected among the results with
different thresholds. In this case, we marked the changes with
each confidential interval, which clearly performs the dynamic
relations.

We generate the Time Logic Causal Relationship Networks
(TLCRNs) using the TL-PC algorithm. The TLCRNs (Fig. 4)
covers 16 variables, including 7 gait variables, 1 distraction
variable, 1 fall variable, 4 gait variables and 3 pain variables.

As usual in traditional statistics, we chose a 95% signif-
icance level as the base level and increase the threshold to
observe dynamic performance (Fig. 4). Different colour and
line types are used to identify the weaker causal relationships
with a higher threshold. With a high significant level, we
can find strong relations. As shown in Figure 1(d), there is
no link that disappears when increasing the threshold, while,
only a few new links are added. Since the relationship is
steady, it is reliable for researchers. However, investigating
the dynamic changes of the TLCRNs can help researchers
find supported features which have the strong relationship with
others. Furthermore, support variables increase the reliability
and interpretability of the causal relationship.

In the Fig. 4, there are 4 weaker relations, which are
PainWHAS3 →Fall Rate, Gender→Fall Rate, Age→ Gen-
der, and Step Time ave→Dblsupp Timw ave. Two weaker
relations towards to the Fall Rate. In this way, there are
5 causal relationships of Fall Rate in total, and three of
them are strong. PainWHAS3 is one of the weaker causal
factors of Fall Rate. It is in the same group as BPIinter Tert

Fig. 4. The Time Logic Causal Relationship Networks (TLCRNs) Generated
by the TL-PC Algorithm. Directed edge represents causal relations, while
double arrows edge means uncertain direction.

which strongly affect Fall Rate. From the TLCRNs, all three
pain variables show the strong relationship in the group.
So the weaker relation between PainWHAS3 and Fall Rate
supports the strong relationship in the same group. The same
as Gender which is another weaker cause of Fall Rate. We
can find strong causal relationships between Race, Age, and
Fall Rate, respectively. Gender is from the same group as
these two variables. The weaker relations support the strong
relations when we set a higher threshold, and we can detect a
strong relationship between the weaker cause and strong cause
coming from the same group.

There is another interesting weaker relationship between
Step Time ave and DblSupp Time ave. We can only find
this link after setting 0.1 or higher threshold. There are 4
isolated variables which are Step Time ave, Stride Time ave,
Stance Time ave, and Swing Time ave respectively. The
causal effects in the group of these 4 variables only can be
detected in the group. In other words, the interactions of these
4 variables are independent of the rest 12 variables. Interest-
ingly, all of these 4 isolated variables are relevant to the time
of gait. So we believe that the information on gait time does
not have strong causal effects on other variables. The weaker
relation between Step Time ave and DblSupp Time ave also
support this. The only one weaker relation is just connect two
of the time variables.



D. Investigation of Specific Targets

In the experiment, we define all 16 variables into 5 different
groups (Fig. 2). Variables in the same group always have
strong and frequent interactions, since only the highest relative
variables which represent the same characteristic will be put in
the same group. However, in this section, we target to find the
causal relationships between groups, especially for the specific
targets of the application.

• The relationships between Pain and Gait
There is only one strong direct causal relationship between
Pain variables and Gait variables can be found from the
TLCRNs (Fig. 4). Walking Speed (Gait Spd) impacts the
number of sites of pain (PainWHAS3) significantly. In this
case, walking speed is the core variable which connects gait
and pain.

• The relationships between Pain and Falls
Fall Rate is strongly influenced by the pain variable BPI-
inter Tert which is a scaled approach to describe the
feeling of pain. Another weaker causal relationship is
PainWHAS3→Fall Rate. Obviously, there are very robust
relationships between 3 pain variables. So the weaker effect
between pain and falls also supports that the performance of
pain can impact the risk of falls.

• The relationships between Gait and Falls
There is no direct influence between gait and falls, however,
gait could be the indirect cause of falls. From the previous
two relationships, walking speed strongly affects the number
of pain positions, while, pain variables have a significant
influence on the risk of falls.

From the experiment result, some important causal rela-
tionships among falls, gait and pain can be detected. Pain is
considered as a strong cause of falls. Meanwhile, pain and
gait have influence relation, which contributes to the indirect
causal influence of gait to falls. Besides, we also find that the
personal profile background performs a powerful influence on
the risk of falls. Through these default features, researchers
can filter out the group of participants with high risk of falls
and provide more help.

V. CONCLUSION

The TL-PC algorithm successfully combines statistics in-
dependent test and machine learning data-driven approach.
It is an efficient, visible and explainable method which can
generate causal relationship networks based on Bayesian
probability theory. The conditional independent test is used
to investigate interactions among all variables. Furthermore,
a more competitive and reliable technique, time logic, is
implemented to orient the causal relationships.
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