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Abstract

Knowledge representation is essential for semantics
modeling and intelligent information processing. For
decades researchers have proposed many knowledge rep-
resentation techniques. However, it is a daunting problem
how to capture deep semantic information effectively and
support the construction of a large-scale knowledge base
efficiently. This paper describes a new knowledge represen-
tation model, SenseNet, which provides semantic support
for commonsense reasoning and natural language process-
ing. SenseNet is formalized with a Hidden Markov Model.
An inference algorithm is proposed to simulate human-like
text analysis procedure. A new measurement, confidence,
is introduced to facilitate the text analysis. We present a
detailed case study of applying SenseNet to retrieving com-
pensation information from company proxy filings.
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1 Introduction

A knowledge representation (KR) technique captures
the properties of real world entities and their relationships.
Enormous amounts of intervened entities constitute a highly
complex multiple dimensional structure. Thus a KR method
needs powerful expressiveness to model such information.

Since 1960’s many KR techniques have been proposed,
such as semantic network, frame, scripts, induction rules
etc. However, it is a daunting problem to capture deep se-
mantic information effectively and support the construction
of a large-scale commonsense knowledge base efficiently.
Previous research focuses more on the expressiveness of

KR. Recently, there is an emerging interest of how to con-
struct a large-scale knowledge base efficiently. In this pa-
per we present a new KR model, SenseNet, which provides
semantic support for commonsense reasoning and natural
language processing.

This paper is organized as follows. Section 2 discusses
related work. We present our KR model, SenseNet, in sec-
tion 3 and its inference algorithm in section 4. Section 5 de-
scribes a real world application on information extraction.
Finally we conclude in section 6.

2 Related work

For decades, artificial intelligence (AI) researchers have
recognized the importance of representing relationships
among words in a commonsense knowledge base. There
exist three major general-purpose knowledge bases, Cyc,
WordNet, and ConceptNet.

WordNet [4] is a widely used semantic resource in com-
putational linguistics community. It is a manually built
database consisting of linked words. These words are or-
ganized into synonym sets called synsets, and each synset
represents one lexical concept. Links are predefined seman-
tic relationships among words. It has taken WordNet more
than 10 years to collect 150,000 words/strings and 110,000
synsets. Fixed links are lack of flexibility and adaptiveness.

Cyc [10] emphasizes on the formalization of common-
sense knowledge into a logical framework. Similar with
WordNet, its knowledge base is handcrafted by knowledge
engineers. In order to use Cyc, a natural language has to be
transformed to a proprietary logical representation, which
is complex and expensive for real world applications.

ConceptNet [6] is proposed in the Open Mind Common
Sense project in MIT. Thousands of common people con-
tributed through the Web by inputting sentences in a fill-
in-the-blank fashion. Then concepts and binary-relational
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assertions are extracted to form ConceptNets semantic net-
work. Currently ConceptNet contains 1.6 million edges
connecting more than 300,000 nodes. Nodes are semi-
structured English fragments, interrelated by an ontology
of twenty predefined semantic relations.

SenseNet shares the same goal of building a large-scale
commonsense knowledge base. Compared with WordNet,
Cyc, and ConceptNet, our contributions are:

1. We use a sense instead of a word as the building block
for SenseNet, because a sense encodes semantic infor-
mation more clearly.

2. A relationship is defined as a probability matrix, which
allows adaptive learning and leads naturally to human-
like reasoning.

3. Relationships among senses are formalized with a Hid-
den Markov Model (HMM), which gives SenseNet a
solid mathematical foundation.

4. A new measurement, confidence, is introduced to fa-
cilitate the text analysis procedure.

5. After the regular learning, SenseNet uses a “thinking”
phase to generate new knowledge.

3 SenseNet: a knowledge representation
model

3.1 The SenseNet model

Lexicon is the knowledge of words, which includes a
large amount of “character string to real entity” mappings.
Memorization of these mappings is difficult for human be-
ings. It explains why in many natural languages a word
often represents multiple meanings. A meaning of a word
is called a sense. From the view of semantics a sense is a
better choice for a knowledge base than a word because a
sense encodes a single and clear meaning. Our KR model,
SenseNet, uses a sense as the basic semantic unit.

An instance of SenseNet is shown in Figure 1 (a). Each
node represents a word. A node has multiple attributes
representing the senses of a word, and each sense repre-
sents a single unambiguous entity (meaning). Entity is de-
fined as “something that has independent, separate, or self-
contained existence and objective or conceptual reality” by
Webster dictionary. A word wordα is defined as the set of
all its senses {sensei}, which is shown in the Figure 1 (b),
where i = 1, · · · , n.

A simple edge connects two semantically related words,
for example, edge1 in Figure 1. As shown in Figure 2, a
simple edge represents the semantic relationship between
wordα and wordβ , that is, the probability of wordα tak-
ing sense i and wordβ taking sense j at the same time. A

Figure 1. (a) An instance of SenseNet (b) A
node of SenseNet represents a word

Figure 2. An edge of SenseNet

simple edge connecting wordα and wordβ is defined as a
probability matrix:

Rn×m = P{wordα = sensei, wordβ = sensej}
i = 1, · · · , n; j = 1, · · · ,m (1)

R is a reflective matrix, that is, the probability of wordα

taking the sensei if wordβ takes the sensej is equal to
the probability of wordβ taking sensej and wordα takes
sensei.

A complex edge connects more than two words (for ex-
ample, edge2 in Figure 1 connects three words, word2,
word3, and word5), which means that these words are se-
mantically related together to express combined or more
specific information. For example, to correctly analyze
“give Tom a book”, “give”, “Tom”, and “book” need to be
processed together to capture the complete information. A
complex edge is formally defined as:

RNwα×Nwβ
×···×Nwγ

= P{wordα = sensei,
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wordβ = sensej , · · · , wordγ = sensek} (2)

where sensei is a sense of wordα, 1 ≤ i ≤ Nwα
, Nwα

is the total number of senses of wordα;
sensej is a sense of wordβ , 1 ≤ j ≤ Nwβ

, Nwβ
is the

total number of senses of wordβ ;
sensek is a sense of wordγ , 1 ≤ k ≤ Nwγ , Nwγ is the

total number of senses of wordγ .
A complex edge that connects m nodes is called a m −

edge, hence a simple edge is also a 2− edge.

3.2 Confidence

Most machine learning algorithms discard duplicate
samples during training as no new information can be
gained. However, the number of these identical samples
indicates how often a sample occurs and how many users
agree upon them. During human learning process, dupli-
cate samples do not give new information, but will build
our confidence on the indicated information. Similarly in
SenseNet we use the number of identical samples as confi-
dence for that sample. We define three types of confidence:
sense confidence, connection confidence and global confi-
dence.

Suppose a word wα has n senses, for each sense there
exists a sense confidence. A sense confidence represents
the frequency that this sense is encountered during train-
ing and is normalized to a value between 0 and 1. A con-
nection confidence is defined on a connection between two
senses. Similarly, it represents the frequency of this connec-
tion is encountered during training and is also normalized
to a value between 0 and 1. Global confidence shows our
overall confidence of the current SenseNet, and it serves as
Cthreshold in our inference algorithm discussed in Figure
5. Global confidence is statistically derived from sense and
connection confidence existed in a SenseNet, for example,
it can be the average value, minimum, or maximum of all
existing confidence. As shown in the inference algorithm
(Figure 5), if global confidence takes the minimum value,
a great number of low-confidence senses will be activated,
which mimics an over-confident human being.

Confidence can also be affected by the source of sam-
ples. For example, we may be very confident with word
definitions in a dictionary. We thus assign a high confi-
dence to these trusted sources directly. By this way training
is shortened because the closer the confidence is to 1, the
less learning is required. Just like a human being, if he is
confident with his knowledge on a topic, he will not spend
much time learning it.

3.3 Implication operation

Training is expensive for most machine learning algo-
rithms. To make the best use of training efforts we apply

Figure 3. Implication process

implication operation to generate new edges and expand
the newly built SenseNet. We denote this phase as think-
ing phase.

Suppose that two edges are learned (Figure 3). Then
through implication operation we try to determine whether
an edge (semantic relationship) exists between word1 and
word3. Implication operation is defined as:

Rl×k = Rl×m ×Rm×k (3)

where Rl×m is the probability matrix between word1

and word2, Rm×k is the probability matrix between word2

and word3, and Rl×k is the calculated probability matrix
between word1 and word3. word1 and word3 are not se-
mantically related if all values in Rl×k are zero. Otherwise,
a new edge is inserted into the SenseNet between word1

and word3. It is possible that there exist multiple routes
connecting word1 and word3. In this case first we will gen-
erate multiple temporary edges from these routes, then these
temporary edges are averaged to generate the new edge be-
tween two words.

The confidence of the newly generated edge is the mul-
tiplication of two original edge confidence. Because con-
fidence values have been normalized between 0 and 1, the
calculated confidence is smaller than either of the original
values. This process exactly simulates the learning process
of human beings, as we usually have lower confidence with
indirect knowledge generated by reasoning than directly
taught knowledge.

In SenseNet both edges and nodes are learned and up-
dated locally and flexibly. Therefore, like human intelli-
gence, SenseNet is robust in dealing with inconsistent and
incomplete data.

3.4 Disambiguation with SenseNet

Ambiguity arises when there are more than one way to
activate the senses or edges in SenseNet. The following
example shows how to use SenseNet to analyze word sense
ambiguity. This process is formalized in section 4.2.

Example: A gambler lost his lot in the parking lot.
Webster dictionary defines “lot” as:

1. an object used as a counter in determining a question
by chance;
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Figure 4. Sense disambiguation for “lot”

2. a portion of land;

3. a considerable quantity or extent; · · ·

Which senses of “lot” should be activated? This prob-
lem is called word sense disambiguation in natural language
processing. Because of the edge between “gambler” and
“lot”, “an object used as a counter in determining a ques-
tion by chance” is activated for the first “lot”, and “a portion
of land” for the second “lot” due to its relation to “park-
ing”(shown in Figure 4).

4 Text Analysis with SenseNet

A Hidden Markov Model (HMM) is a discrete-time
finite-state automation with stochastic state transition and
symbol emission [3]. Recently HMM is gaining popularity
in text mining as researchers pay more attention to relations
and context of entities[7]. HMM has been widely used for
segmentation [8], text classification [5], and entity extrac-
tion [2]. For details about HMM, please refer to [1].

4.1 Formalizing text analysis process with
a Hidden Markov Model

In SenseNet, the text analysis process is the process of
selecting appropriate senses for each word in the text. To
understand a document, a human being tries to determine
meanings (senses) of words, which is an analysis and rea-
soning process. We formalize this process with a HMM
using SenseNet as the knowledge base. Suppose there are
M states in the HMM. The state at time t is st, where
t = 0, 1, 2, · · · ,M is the time index. The initial state s0 is
an empty set. The state st consists of the senses of all pro-
cessed word set Wt. At time t + 1, we will determine the
sense of next unprocessed word wt+1 that has connections
(edges in SenseNet) with Wt. Which sense of wt+1 will
be activated is decided by strength (probability and confi-
dence) of edges between wt+1 and Wt in SenseNet. The
transition from st to st+1 is given by the conditional prob-
ability P (st+1|Wt), which is specified by a state transition
matrix A. Elements of A are defined as:

aij = P (st+1 = st ∪ wj
t+1|Wt = W i

t ) (4)

where j is the jth sense of word wt+1, and W i
t denotes

the ith combination of senses of the words in Wt. Notice
that

∑
i

∑
j aij = 1.

If probability is the only measure in determining word
senses, we simply choose the wj

t+1 that has the highest
probability. However, as demonstrated by human text anal-
ysis process, probability itself is not sufficient, thus confi-
dence is desired to measure how confident we are with our
decisions. For example, the transition with highest proba-
bility is not trustworthy if it has a very low confidence. This
is guarded by the Cthreshold in our inference algorithm in
section 4.2. HMM has so-called “zero-frequency problem”
[11] if transitions of zero probability (no training samples)
are activated. SenseNet solves this problem by assigning a
small value to every transition as its initial probability.

4.2 Inference algorithm for text analysis
process

The inference problem of a regular HMM is to find the
state with highest probability, which is efficiently solved by
Viterbi algorithm [9]. However, in SenseNet the goal is to
find a state set S with high probability and confidence for a
given document, which consists of the word sequence W =
w1, w2, · · · , wn. Thus, the inference algorithm (Figure 5)
returns all states that satisfy:

S = {si|P (si|W ) > Pthreshold, (5)
C(si|W ) > Cthreshold}

where Pthreshold and Cthreshold are the minimum re-
quirements for probability and confidence. S is generated
from the line 21 to 26. If S is empty, either SenseNet does
not have enough knowledge or the document is semanti-
cally wrong; if S has one state, SenseNet understands the
document unambiguously; if S has multiple states, there
exist multiple ways to understand the document, which re-
sults in ambiguity. Ambiguity is very common in a natural
language. With SenseNet we can successfully detect and
analyze ambiguity.

The inference algorithm simulates how a human being
interprets documents. It starts with a word that owns a sense
with the highest confidence (line 1 - 2). If there exist multi-
ple such words, we choose the first one occurring in the doc-
ument. Then the algorithm performs a breath-first searching
of all possible paths with probability and confidence above
given thresholds and save them into S (line 3 - 20). If a word
in S0 has multiple senses, all of them are enumerated by the
loop starting at line 3. Within the loop TBDi (TBD means
“to be determined”) saves all unprocessed words; Si saves
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Inference(W = w1, w2, · · · , wn) {
1 S = φ;
2 put a word with the highest confident sense into W 0;

(choose the first one if more than one word have
the same sense confidence)

3 for each sense i of word(s) in W 0 {
4 TBDi = W −W 0;
5 Si = W 0;
6 for each state sik in Si {
7 Pik = P(sik);
8 Cik = C(sik);
9 TBDik = TBDi;
10 while TBDik is not empty {
11 choose any words in TBDik that have

edges to words in sik, add them to sik,
these newly added words are denoted as W ′,
activate their senses with highest probability;

12 TBDik = TBDik - W ′;
13 Pik = Pik × P (newly added edges);
14 Cik = Cik × C(newly added edges)

× C(newly added senses);
15 if Cik < Cthreshold or Pik < Pthreshold

16 remove sik from Si, go to 6;
17 }; // end of TBDik loop
18 }; // end of Si loop
19 S = S ∪ Si;
20 }; // end of W 0 loop
21 if S is empty
22 output “failure”;
23 else if there is only one state in S
24 output this state as result;
25 else
26 output all states, their probabilities and confidences;
27 }

Figure 5. Inference algorithm of SenseNet

all partial state sequences found so far for the ith sense.
Then the algorithm tries to complete each partial state se-
quence by activating the related senses in SenseNet (line
11). During the process, the probability and confidence for
each state sequence are updated with newly added edges
and senses. If either probability or confidence falls be-
low its threshold, this state sequence is discarded (line 16).
P (newly added edges) in line 13 is the product of proba-
bilities of all newly added edges; C(newly added edges)
in line 14 is the product of confidences of all newly added
edges, and C(newly added senses) is the product of con-
fidences of all newly added senses. Line 19 saves all qual-
ified state sequences into S. As more words in W are pro-
cessed, Pik and Cik become lower, which precisely mimics
the process of human text analysis. When a human being

reads a long and hard article, he feels more and more con-
fused and less and less confident.

5 A case study

We used a corpus of public company proxy filings re-
trieved from the online repository of the United States Secu-
rities and Exchange Commission (SEC). SEC names these
documents as DEF 14A. Every DEF 14A contains one exec-
utive compensation table(table 1). There exist a wide range
of structural differences among these tables, such as differ-
ent number of lines or columns for each executive entry,
incomplete data. As shown in table 1, without semantic in-
formation we can not understand that this table describes
compensation of two executives for three years. Utilization
of mere structural information results in a “brittle” system.

We built an Executive Compensation Retrieval System
(ECRS) to extract the data fields from these tables and save
them in a database. ECRS includes,

1. a web crawler to download the latest DEF 14A regu-
larly.

2. a knowledge base generated from a list of personal
names from the U.S. Census Bureau and a list of titles
of company executives. According to the Census Bu-
reau, this name list contains approximately 90 percent
of all of the first and last names in use in the U.S. The
list was partitioned by first and last name and the total
number of entrees is 91,933. Each first or last name
will be a node in SenseNet, and there exist one edge
between each pair of first name and last name. For the
company executive title list, titles were manually ex-
tracted from about 25 randomly picked financial docu-
ments. Example titles include Chief Executive Officer,
CFO, Chairman, Chief, and CIO etc. We converted
this list into SenseNet with each word as a node, and
there are edges for words appearing in one title. We
found that some words appear in both the name and
title list, such as “president”, “chairman”. And these
words have two senses and require disambiguation.
Since the names and titles come from trusted sources,
we assign all confidence values as 1.

3. an extraction module, which locates executive com-
pensation tables and extracts executive names, titles,
salary, bonus, stock options and other data fields.

4. a database that saves all the extracted information.

The experiment was conducted using randomly picked
Standard and Poor’s 500 companies from different indus-
tries based on Global Industry Classification Standard: 1.
Automobile, 2. Bank, 3. Commercial Supply and Service,
4. Energy, 5. Food Beverage and Tobacco, 6. Health Care,
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Name Year Salary Bonus ...
Edwin M. Crawford
Chairman of Board 2003 1500000 127456 ...
and Chief Executive 2002 103203 ...
Officer 2001 1294231 207299 ...
A.D. Frazier, Jr 2003 1000000 450000 ...
President and Chief 2002 392308 418167 ...
Operating Officer 2001 N/A N/A ...

...

Table 1. A segment of a DEF 14A Form

Industry Number of Number of Extracted
years records records

1 2 10 5
2 2 18 15
3 3 27 25
4 1 3 2
5 3 15 13
6 2 40 34
7 3 18 13
8 3 12 8
9 1 3 3
10 2 20 15
11 2 18 16

Table 2. Information extraction results

7. Insurance, 8. Pharmaceutical and Biotechnology, 9. Real
Estate, 10. Software and Service, 11. Transportation. Since
the only way to validate the results is by manual checking,
a large-scale experiment is not feasible. Instead, we try to
diversify the DEF 14A used in the experiment. At least one
company of each industry was selected, and the total num-
ber of tested companies is 19. Depending on availability
one to three years’ reports were retrieved for each company.
Total number of compensation records is 184. 149 of them
are successfully extracted (table 2).

6 Conclusion and future work

SenseNet models some important aspects of human rea-
soning in natural language processing, and has nice prop-
erties as a lexical knowledge base. However, to achieve
human-level intelligence there are still many open problems
that we are working on, for example,

1. Does there exist an automated method to build a high-
quality commonsense knowledge base?

2. How to build knowledge at a higher level of granularity
than lexicon (such as frame, script, etc.)?
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