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Abstract—Group feature selection makes use of structural
information among features to discover a meaningful subset of
features. Existing group feature selection algorithms only deal
with pre-given candidate feature sets and they are incapable of
handling streaming features. On the other hand, feature selection
algorithms targeted for streaming features can only perform at
the individual feature level without considering intrinsic group
structures of the features. In this paper, we perform group feature
selection with streaming features. We propose to perform feature
selection at the group and individual feature levels simultaneously
in a manner of a feature stream rather than a pre-given candidate
feature set. In our approach, the group structures are fully
utilized to reduce the cost of evaluating streaming features. We
have extensively evaluated the proposed method. Experimental
results have demonstrated that our proposed algorithms statisti-
cally outperform state-of-the-art methods of feature selection in
terms of classification accuracy.

I. INTRODUCTION

Feature selection, a.k.a. variable selection, reduces the
number of features to speed up the learning process, to improve
learning accuracy, enhance generalization capability, and facil-
itate model interpretation. It hence has been an active research
field for decades in data mining and machine learning, and has
broad applications in text mining, genomic analysis, intrusion
detection, and image retrieval [1]. Generally speaking, feature
selection removes noisy, irrelevant, and redundant features, and
selects relevant features from a given candidate feature set or
a feature stream at the individual feature level.

In this paper we address the problem of feature selection
with streaming features at both the group level and the in-
dividual feature level. We target at the problem that features
possess certain group structures, which is typical in many real-
world applications. One of the most common examples, the
multi-factor Analysis of Variance (ANOVA), is a statistical
technique to test the significant differences among multiple
means. In this technique, the inferences are made by analyzing
variances rather than means, as each mean (factor) is expressed
through a group of variances (dummy variables) [2]. Another
popular example is the categorical feature being represented
as a group of dummy features [3]. A dummy feature is a
design feature that takes a binary value 0 or 1 to indicate
the absence or presence of a categorical value of a categorical
feature. Obviously, each group of dummy features/variables
corresponds to one measured feature/variable and is directly
related to the measurement cost. Therefore, in such cases, fea-
ture/variable selection corresponds to the selection of groups
rather than individual dummy features/variables. As generating
features in different groups may require different procedures,
measurements, domain knowledge, etc., the candidate features

are very likely to appear in the form of a feature steam, in
which features are generated dynamically and arrive one by
one and group by group. This situation appears in many real-
world applications. For example, several giga features with
values in {A, C, G, T}, thus each feature being represented
by a group of 4 dummy features, can be generated using the
next-generation sequencing techniques only on one run [1].
The storage cost is very expensive to keep those features,
and it is not practical to wait until all features have been
generated before learning begins. Therefore, it could be far
more preferable to generate candidate features one at a time
for all observations [4], [5], [6].

Many existing algorithms can effectively perform feature
selection from a given candidate feature set or a feature stream.
However, without considering group structures, they always
try to select features with sparsity (a small percentage) only at
the individual feature level. Selecting features with sparsity at
both the group level and the individual feature level is more
preferable when group structures exist. For instance, in the
above categorical feature example, 20 dummy features in 20
groups correspond to 20 measured features, while 20 features
in 2 groups only need to measure two original features, and
the measurement cost decreases sharply.

In this paper, a new algorithm named GFSSF is proposed
for group f eature selection with streaming f eatures. Unlike
existing algorithms, GFSSF performs feature selection at both
the group and individual feature levels simultaneously from
the features generated and arrived so far to achieve accurate
classification peformance. The main contributions of this paper
are as follows:

1) Utilizing feature group structures, GFSSF effectively
identifies relevant features from important groups and selects
features with sparsity at both the group and individual feature
levels.

2) If without using feature group structures, GFSSF treats
each feature as an individual group and performs feature
selection just at the individual feature level. Moreover, a user-
specified reasonable group size can improve the time efficiency
significantly.

3) GFSSF can be easily configured to perform feature
selection at the group level, the individual feature level, or
both.

4) Extensive experiments have demonstrated that our pro-
posed method is superior to others on extensive benchmark
datasets with or without group structures.
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II. RELATED WORK

A standard feature selection scenario assumes that all
candidate features are available before feature selection takes
place, where mutual information (MI) has attracted a lot of
attention as a measure of relevance and redundancy among
features. Battiti [7] defined the feature selection problem as
the process of selecting the most relevant features from a
set of candidate features, and proposed a selection method
MIFS. Later, Kwak and Choi in [8] analyzed the limitations
of MIFS and proposed a greedy selection method MIFS-U. A
redundancy criterion was introduced in the min-redundancy
max-relevance (mRMR) method in [9]. Normalized mutual
information feature selection (NMIFS), an enhancement over
MIFS, MIFS-U, and mRMR, was proposed in [10]; and
Liu et al. proposed a feature selection algorithm based on
dynamic mutual information in [11]. Recently, Brown et al.
[12] proposed a unifying framework for information theoretic
feature selection.

A streaming feature selection scenario assumes that the
candidate features are generated dynamically and arrive one
at a time instead of all candidate features being known in
advance. Algorithms designed for the standard feature selec-
tion scenario cannot fit streaming features well due to the
candidate features not being available at the beginning. Perkins
and Theiler proposed the Grafting method in [4], which is
an online feature selection method based on a stagewise
gradient descent technique. Zhou et al. [13], [14] presented two
algorithms, information-investing and α-investing, based on
streamwise regression for streaming feature selection. Wu et al.
[5] proposed an online streaming feature selection framework
with two algorithms OSFS and fast-OSFS.

Group feature selection, the selection of important groups
rather than individual features, is a new and interesting topic.
Lasso [15] is a shrinkage and selection method for linear
regression, which minimizes the sum of squared errors with the
L1 penalty on the sum of the absolute values of the coefficients.
By extending the L1 penalty of lasso to an intermediate
between the L1 and L2 penalty [16], [17], Yuan and Lin in [2]
proposed the group lasso model for selecting grouped variables
for accurate prediction in regression. Later, Roth and Fischer
[16] extended the group lasso to logistic regression models,
which are especially suitable for high dimensional problems.
Other extensions of group lasso include the group lasso for
generalized linear models [3], the group lasso with overlap
between groups [17], etc. The sparse group lasso criterion was
proposed in [18], and can yield solutions that are sparse at both
the group and feature levels.

In this paper, we improve the group feature selection
from the standard feature selection scenario to the streaming
feature selection scenario by exploiting entropy and mutual
information in information theories.

III. PRELIMINARY

PROBLEM DEFINITION: Given a candidate feature set X

and the target feature Y , the task of feature selection is to find
a subset of features F ⊆ X, such that F maximally represents
Y with minimal residual uncertainty.

By extending the definitions of entropy and mutual in-
formation in information theories [19], [20] from variables

to sets of variables, the uncertainty of Y is the entropy
H(Y ), and the information shared by F and Y is their mutual
information I(F;Y ). Therefore, given the information of X ,
X can share I(X;Y ) with Y , and the residual uncertainty of
Y reduces to H(Y |X) = H(Y ) − I(X;Y ). Furthermore, if
the information of ∀X ∈ F is given, F can share I(F;Y ) with
Y , and the residual uncertainty of Y is H(Y |F). Ideally, if
I(F;Y ) = H(Y ), then knowing information of the features in
F can determine Y directly as the residual uncertainty reduces
to H(Y |F) = H(Y )− I(F;Y ) = 0.

Given a feature stream, in which the size p of the candidate
feature set X = {X1, · · · , Xp} is unknown or even infinite,
features arrive one at a time, and the number of observations
n is constant [4], [13], [14], [5]. The n observations are
independent and identically distributed. The values of the
target feature Y for the n observations arrived at the very
beginning. Suppose that these p features can be divided into
q disjoint groups, then we can rewrite X = {G1; · · · ;Gq},
where Gi = {X∑i−1

j=1 |Gi|+1, · · · , X∑i
j=1 |Gi|} for ∀i ∈ [1, q].

Concretely, the task of group feature selection from streaming
features is to seek a group set Γ that is sparse at both the group
level and the individual feature level, by solving the following
optimization problem

min
Γ
{H(Y )− I(Γ;Y )}+ {λ1|Γ|g + λ2|Γ|f}, (1)

where |Γ|g and |Γ|f are the number of groups and the number
of features in the selected group set Γ, respectively. The first
part H(Y ) − I(Γ;Y ) is the residual uncertainty of Y after
knowing the information of features in Γ. The second part
λ1|Γ|g+λ2|Γ|f , which controls the numbers of selected groups
and features, is a penalty.

Definition 1. [Irrelevance] Given two features X and Y , X
is irrelevant to Y if and only if I(X;Y ) = 0.

Theorem 1. Given the target feature Y and a newly arrived
feature X from the feature stream, if X is irrelevant to Y , then
X can be safely discarded.

Proof: ∵ I(X;Y ) = H(X)+H(Y )−H(X,Y ) [19] and
I(X;Y ) = 0 (given), ∴ H(X,Y ) = H(X)+H(Y ), ∴ X and
Y are independent, ∴ discarding X is lossless for Y .

Definition 2. [Redundancy] Given two features X and Y , and
a set of features F, X is redundant to F for Y if and only if
I(X;Y |F) = 0.

Theorem 2. Given the target feature Y , and a set of selected
features F, if ∃X ∈ F s.t X is redundant to F \ {X} for Y ,
then X can be safely removed from F.

Proof: ∵ I(F;Y ) = I(F \ {X} ∪ {X};Y ) = I(F \
{X};Y )+I(X;Y |F\{X}) and I(X;Y |F\{X}) = 0 (given),
∴ I(F;Y ) = I(F \ {X};Y ), ∴ F \ {X} can provide the same
information for Y as F, ∴ removing X is lossless for Y .

Definition 3. [Coverage] Given three features X , X̄ and Y ,
X covers X̄ on Y if and only if I(X̄;Y |X) = 0.

Theorem 3. Given the target feature Y , a newly arrived
feature X , and a set of selected features F, if ∃X̄ ∈ F s.t
X covers X̄ on Y , then X̄ can be safely replaced by X in F.
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Proof: ∵ X covers X̄ on Y , ∴ I(X;Y ) ≥ I(X̄;Y ) and
I(X̄;Y |X) = 0. Furthermore, with I(X;Y |F) ≥ I(X̄;Y |F)
and based on F, X can provide all information that X̄
provides for Y . Therefore, this replacement is lossless for Y .
Meanwhile, as a replacement, it will not change the number
of features in F.

Such a replacement may bring two potential benefits: (1)
∵ I(X;Y |F) ≥ I(X̄;Y |F), ∴ X has the potential to provide

more new information for Y based on F than X̄; (2) ∵ ∀X̂ ∈
F covered by X on Y can be safely removed (Theorem 2),
therefore, this replacement has the potential to decrease the
number of selected features.

Theorem 4. Given the target feature Y , a newly arrived
feature X from the feature stream, and a set of selected
features F, if X is redundant to F for Y and X cannot cover
∀X̄ ∈ F on Y , then X can be safely discarded.

Proof: ∵ X is redundant to F for Y , ∴ adding X cannot
provide any new information for Y based on F. As X cannot
cover ∀X̄ ∈ F on Y , ∴ � ∃X̄ ∈ F s.t. X̄ can be safely removed
from F, ∴ adding X into F will increase the number of selected
features. Overall, discarding X is lossless for Y , and will avoid
redundancy in F.

IV. THE PROPOSED METHOD

In this section, we propose our group feature selection with
streaming features (GFSSF), which consists of feature level
and group level selections. The group structures are obtained
from domain knowledge or start with a user-specified group
size for the sake of time efficiency.

A. Feature Level Selection

The feature level selection algorithm InGFSSF is given in
Algorithm 1. It only processes features from the same group,
and seeks the best feature subset from the arrived features so
far. The selected feature subset F is initialized as an empty
set in Step 2 if the latest arrived feature X is the first one
in the group. Step 4 tests whether X is relevant to the target
feature Y (Definition 1), and if failed, it is discarded directly
(Theorem 1). If (Step 5) X is not redundant to F for Y , Step 6
adds it into F as it can provide new information for Y that any
other formerly selected feature cannot; Else if (Step 7) X is
redundant but it can cover some Xi ∈ F on Y (Definition 3),
Xi is replaced by X in Step 8 (Theorem 3); Otherwise (Step 9),
X is redundant to F for Y , and meanwhile, it cannot cover any
Xi ∈ F on Y , therefore, it is discarded in Step 10 (Theorem
4). Once the new feature X is selected and added into F, some
of the other features in F may become redundant. Therefore,
the ‘while’ loop (Steps 12 – 14) removes any redundancy in
F (Theorem 2). Finally, Step 16 returns the currently selected
subset F.

B. Group Level Selection

Algorithm 2 is the group level selection algorithm Ag-
GFSSF, and seeks a set of groups that can cover as much
uncertainty of the target feature Y as possible with a minimum
cost (i. e. the penalty on the number of selected groups and
the number of selected features). This algorithm is similar to
Algorithm 1, and the only differences are the selection level

Algorithm 1 InGFSSF

Require:
X; Y ; The group structures;

Ensure:
1: if {X is the first arrived feature of the group } then
2: F← ∅
3: end if
4: if I(X;Y ) �= 0 then
5: if I(X;Y |F) > 0 then
6: F← F ∪ {X}
7: else if ∃Xi ∈ F s.t. I(Xi;Y |X) = 0 then
8: F← F ∪ {X} \ {Xi}
9: else

10: Goto Step (16)
11: end if
12: while ∃Xi ∈ F s.t. I(Xi;Y |F \ {Xi}) = 0 do
13: F← F \ {Xi}
14: end while
15: end if
16: return F

Algorithm 2 AgGFSSF

Require:
F; Y ; The group structures;

Ensure:
1: if {F is the first arrived group} then
2: Γ← ∅
3: end if
4: if |F|f > 0 then
5: if I(F;Y |Γ) ≥ λ1 + λ2 × |F|f then
6: Γ← Γ ∪ {F}
7: else if ∃Fi ∈ Γ s.t I(F;Y |Γ \ {Fi}) − I(Fi;Y |Γ \ {Fi}) ≥ λ2 ×

(|F|f − |Fi|f ) then
8: Γ← Γ ∪ {F} \ {Fi}
9: else

10: Goto Step (16)
11: end if
12: while ∃Fi ∈ Γ s.t I(Fi;Y |Γ \ {Fi}) < λ1 + λ2 × |Fi|f do
13: Γ← Γ \ {Fi}
14: end while
15: end if
16: return Γ

and the penalty. In Step 6, the newly arrived group F is selected
if the new information it provides for Y is more than the
penalty that comes with it (the ‘if ’ test in Step 5 ). If replacing
Fi ∈ Γ with F can lower Formula (1) (Step 7), Step 8 performs
this replacement. After adding F, the ‘while’ loop (Steps 12
– 14) tries to lower Formula (1) by removing some formerly
selected groups.

C. Framework of GFSSF

Algorithm 3 GFSSF

Require:
The feature stream; The group structures;

Ensure:
1: repeat
2: repeat
3: X ← the newly arrived feature
4: F← InGFSSF(X)
5: until {X is the last arrived feature of a group}
6: Γ← AgGFSSF(F)
7: until {Meet some stopping criteria}
8: return Γ

The framework of GFSSF is presented in Algorithm 3.
With only one single pass over the feature stream GFSSF is
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MIFS JMI mRMR RELIEF α-invest. Grafting OSFS Fast-OSFS Lasso Group Lasso GFSSF◦ GFSSF•
WDBC 92.62(06) 92.12(10) 98.77(10) 99.30(11) 95.12(30) 92.81(12) 99.30(08) 94.05(11) 93.67(06) 97.36(10){4} 98.59(06) 99.30(06){3}
WPBC 62.63(05) 93.46(05) 62.63(05) 95.98(10) 86.87(04) 91.93(04) 85.87(03) 62.63(01) 81.86(06) 85.86(12){5} 97.47(05) 98.99(04){3}

IONOSPHERE 67.24(05) 83.86(10) 95.30(11) 91.58(12) 90.12(10) 88.05(04) 90.91(03) 87.56(04) 88.31(16) 90.59(21){5} 98.86(03) 99.15(05){2}
SPECTF 63.75(06) 94.25(08) 87.75(10) 95.00(08) 65.14(03) 91.75(21) 96.25(07) 95.31(11) 82.51(08) 95.00(19){3} 93.52(03) 98.75(07){2}

ARRHYTHMIA 85.40(10) 82.58(09) 95.02(12) 86.23(30) 91.59(08) 92.69(19) 95.80(13) 95.80(19) 79.13(17) 85.00(27){4} 94.47(08) 96.35(12){4}
DLBCL — — — 74.32(15) 91.60(04) 85.42(05) 91.51(02) 91.51(27) 88.16(08) 91.25(19){7} 92.21(02) 92.21(02){2}

LUNG — — — 79.92(16) 100.0(26) 91.96(05) 100.0(02) 97.92(03) 94.85(07) 97.94(07){3} 98.96(02) 100.0(03){2}
CNS — — — 71.00(19) 61.67(02) 95.00(02) 95.00(04) 93.67(82) 87.70(12) 95.00(23){7} 95.00(02) 95.00(02){1}

ARCENE — — — 68.72(20) 95.30(09) 88.15(09) 91.54(02) 89.73(09) — — 99.60(05) 99.60(04){4}
OVARIAN — — — 65.32(36) 87.13(14) 87.22(15) 89.25(02) 86.12(04) — — 94.02(05) 94.02(04){2}

AVG. 77.33 89.25 88.49 82.74 86.44 90.49 93.58 89.02 87.52 92.25 96.27 97.34
WTL 0/0/10 0/0/10 0/0/10 0/1/9 0/1/9 0/1/9 0/3/7 0/0/10 0/0/10 0/1/9 0/4/6 4/6/0

TABLE I: Comparison of Classification Accuracies (%) Using 12 Algorithms on 10 Datasets without Group Structures

able to complete feature selection at the individual feature level
and the group level simultaneously. Given a feature steam, the
target feature Y and the group structures, it seeks a group
set Γ to minimize Formula (1). Step 3 keeps receiving new
features from the feature steam. Step 4 invokes the feature
level selection algorithm InGFSSF (Algorithm 1) to process
the newly arrived feature in the current group, where F is the
currently selected feature set. Once all features of a group
have arrived, the feature level selection for that group is done.
Then in Step 6, the group level selection algorithm AgGFSSF
(Algorithm 2) is invoked to process the new group, where Γ
is the currently selected group set.

From Algorithms 1 and 2, there is no tolerance for irrel-
evant and redundant features in InGFSSF, while AgGFSSF is
more aggressive in discarding groups with a large size yet little
effect. Therefore, GFSSF always yields results with sparsity at
both the group level and the individual feature level. On the
one hand, if all candidate features are in a single group, GFSSF
only performs selection at the individual feature level; on the
other hand, it only performs selection at the group level if
InGFSSF does nothing. Therefore, GFSSF can be easily set
to perform selection at the individual feature level, the group
level, or both by the group size and its parameters.

V. EXPERIMENTS

A. Experimental Settings

We choose 10 well-known algorithms from the standard
feature selection scenario (MIFS [7], JMI [21], mRMR [9],
RELIEF [22] and Lasso [15]), the streaming feature selection
scenario (Grafting [4], α-investing [13], OSFS [5], Fast-OSFS
[5]), and the group feature selection scenario (Group Lasso [2])
for our experiments. Two variants of our proposed algorithm,
GFSSF◦ and GFSSF•, are evaluated in our experiments. The
group size of GFSSF• is user specified or from the group
structures among features in datasets, while GFSSF◦ sets
its group size to infinity. Obviously, GFSSF◦ only performs
feature level selection as all features fall into the same group.

The parameter λ of Grafting was chosen through cross-
validation, α-investing exploited its default parameters, and
the statistical significance level parameter α for both OSFS
and Fast-OSFS was set to 0.05 or 0.01 whichever reached
a better performance. Lasso [15] and Group Lasso [2] both
adopted the LogReg(•) penalty function. The parameters of

both GFSSF◦ and GFSSF• were λ1 =
H(Y )
4|X|g and λ2 =

H(Y )
4|X|f ,

where H(Y ) is the entropy of the target feature Y , and |X|g
and |X|f are the number of arrived groups and the number of
arrived features so far, respectively.

WDBC ARRHYTHMIA LUNG Ovarian
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Grafting

Fig. 1: Running Time of 4 Algorithms on 4 Datasets

To validate conservative performance, 15 datasets were
adopted in our experiments. 5 UCI benchmark datasets:
WDBC, WPBC, IONOSPHERE, SPECTF and ARRHYTH-
MIA; 5 challenge datasets with relatively high feature di-
mensions downloaded from (http://mldata.org/repository): DL-
BCL (7,130 features, 77 instances), LUNG (7,130 features,
96 instances), CNS (7,130 features, 96 instances), ARCENE
(10,000 features, 100 instances) and OVARIAN (15,155 fea-
tures, 253 instances); 5 UCI datasets with generated group
structures: HILL-VALLEY (400 features, 606 instances),
NORTHIX (800 features, 115 instances), MADELON (2,000
features, 4,400 instances), ISOLET (2,468 features, 7,797
instances), and MULTI-FEATURES (2,567 features, 2,000
instances). The group structures were built by introducing
dummy features: first, continuous features were discretized into
nominal ones; second, each feature was replaced by 4 dummy
features; and finally, for each dataset, a balanced training
dataset was built by randomly selecting without replacement,
and the rest were reserved for testing.

In our experiments, four popular classifiers, namely, Naive-
Bayes [23], k-NN [24], C4.5 [25], and Randomforest [26],
were chosen to test classification capability of the selected
feature subset, and the best accuracy was selected as the result.
To achieve impartial results, if an independent testing dataset
is not provided, 10-fold cross-validation was adopted for each
“algorithm–dataset” combination in verifying classification ca-
pability. The experiments were conducted on a computer with
Windows 7, 3.33 GHz dual-core CPU, and 4GB memory.

B. Experimental Results

RESULTS ON DATASETS WITHOUT GROUP STRUCTURES:
Table I lists the results about classification accuracies (%)
and the number of selected features (in (•)) on 10 datasets
without group structures using 12 different algorithms.

Table I shows that the classification accuracies of GFSSF◦
and GFSSF• are better than the others in most cases. One can
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Fig. 2: Accuracies of 4 Other Algorithms on 3 Datasets with Group Structures

Training Instances α-investing Grafting OSFS Fast-OSFS Lasso Group Lasso GFSSF◦ GFSSF•
NORTHIX

30 67.32(94)[56] 61.24(92)[92] 70.13(22)[18] 70.13(22)[18] 64.17(53)[53] 68.51(97)[89] 70.31(78)[71] 85.42(29)[13]

60 75.15(84)[82] 74.87(85)[79] 79.14(27)[24] 79.48(25)[21] 72.17(62)[62] 71.58(97)[81] 91.16(21)[19] 93.62(23)[10]

HILL–VALLEY

100 38.05(43)[37] 47.43(31)[21] 42.40(32)[25] 51.49(33)[30] 59.12(37)[36] 63.15(47)[43] 73.92(28)[27] 72.25(32)[24]

200 66.28(61)[57] 55.38(43)[42] 47.45(32)[26] 48.45(32)[32] 75.51(27)[21] 73.15(33)[22] 78.16(19)[17] 79.92(26)[14]

300 87.27(76)[72] 63.84(57)[37] 52.16(18)[18] 52.16(18)[18] 75.58(23)[21] 80.14(28)[18] 79.75(23)[18] 87.27(28)[09]

MULTI–FEATURES

200 22.15(13)[13] 49.34(13)[12] 40.24(12)[12] 63.48(13)[13] 69.21(17)[16] 64.45(17)[14] 78.79(18)[17] 74.52(22)[14]

400 68.21(21)[17] 53.48(15)[14] 40.24(12)[12] 40.24(12)[12] 72.34(27)[19] 72.56(23)[15] 77.06(21)[17] 78.97(26)[14]

600 83.79(26)[22] 62.48(17)[17] 49.61(14)[14] 49.61(14)[14] 77.92(33)[21] 83.74(28)[18] 77.73(23)[19] 82.97(28)[17]

800 84.94(47)[29] 80.86(51)[27] 52.76(13)[13] 51.58(16)[16] 83.33(25)[17] 87.59(23)[18] 81.91(16)[11] 88.58(19)[12]

1,000 90.76(94)[56] 91.42(98)[87] 71.88(12)[11] 71.88(12)[11] 85.79(31)[23] 90.55(25)[10] 87.16(18)[11] 91.85(19)[06]

MADELON

400 78.39(18)[15] 50.18(12)[12] 57.06(13)[13] 57.06(13)[13] 73.12(25)[16] 72.39(17)[13] 82.44(18)[16] 76.14(16)[13]

800 81.12(22)[17] 75.38(15)[15] 64.09(14)[13] 64.09(14)[13] 81.66(26)[16] 80.75(19)[14] 84.13(18)[15] 85.61(19)[13]

1,200 86.16(27)[27] 75.95(16)[16] 70.66(16)[15] 65.08(16)[14] 86.59(28)[17] 88.79(22)[14] 88.12(21)[16] 89.32(18)[10]

1,600 86.94(28)[27] 80.86(21)[17] 72.69(18)[16] 72.69(18)[16] 86.00(21)[17] 85.61(24)[14] 89.92(22)[17] 89.11(18)[08]

2,000 82.46(27)[14] 83.10(19)[16] 64.26(19)[16] 60.81(18)[16] 84.03(27)[21] 87.76(12)[05] 85.41(15)[07] 90.31(13)[04]

ISOLET

700 62.15(53)[39] 59.34(45)[41] 50.28(22)[22] 67.83(54)[53] 68.92(27)[26] 67.56(27)[24] 74.95(28)[27] 72.15(22)[13]

1,400 64.61(48)[47] 64.74(23)[12] 51.46(12)[12] 51.46(12)[12] 71.64(27)[18] 75.62(23)[15] 76.63(21)[17] 77.08(26)[14]

2,100 72.23(76)[62] 65.57(17)[17] 54.96(14)[14] 54.96(14)[14] 74.16(29)[25] 81.57(18)[08] 79.47(23)[19] 82.97(18)[07]

2,800 89.86(98)[89] 79.98(51)[27] 62.65(13)[13] 62.15(16)[16] 81.34(26)[18] 88.25(24)[09] 83.19(17)[10] 89.18(19)[08]

3,500 92.15(92)[90] 92.52(95)[87] 90.14(32)[28] 88.89(29)[27] 91.87(17)[13] 91.55(17)[09] 92.98(20)[19] 96.36(15)[05]

TABLE II: Comparison of Classification Accuracies (%) Using 8 Algorithms on 5 Datasets with Group Structures

easily observe that GFSSF• gets the highest accuracies on all
datasets, while GFSSF◦ gets 4 out of 10. Besides, the average
accuracy of GFSSF◦ is higher than any other competitor, and
even in the loss cases, it selects fewer features with competitive
accuracies. For instance, on SPECTF, it only selects 3 features,
the least number of features on that dataset, for an accuracy of
93.52%, while both RELIEF and JMI select 8, OSFS selects
7, Fast-OSFS selects 11, and Group Lasso selects 19.

Meanwhile, Table I also shows that GFSSF◦ and GFSSF•
select very compact features. GFSSF◦ selects the least number
of features from 7 out of 10 datasets, while GFSSF• does 3
out of 10. And their max number of selected features is only
8 and 12, respectively. OSFS also selects compact features
but with much lower accuracies. For instance, on ARCENE,
OSFS selects 2 features with an accuracy of 91.54%, while
GFSSF• and GFSSF◦ achieve 99.60% with 4 and 5 features,
respectively. Obviously, it is a good tradeoff to increase the
accuracy from 91.54% to 99.60% with 2 or 3 more features.

As shown in Table I, MIFS, JMI, mRMR, Lasso and Group
Lasso crash when the number of features is increased to a
certain threshold. The running time of RELIEF depends on the
user-specified number of selected features, in our experiments,
and it crashed when the number of features is larger than 7000
and the user-specified number of selected features approaches
40, which indicates their poor scalabilities. Therefore, we did
not compare our algorithms against them in running time.
Since OSFS and Fast-OSFS were implemented in C and ours
in Matlab, a direct time comparison is meaningless. Therefore,
we only compare the running time of our algorithms with
the most comparable algorithms α-investing and Grafting. As
demonstrated in Figure 1, both GFSSF◦ and GFSSF• can
be applied effectively to very high dimensional datasets. For
instance, they can process the Ovarian dataset, which contains
15115 features, within less than 30 seconds. Besides, GFSSF•
requires less running time than GFSSF◦ on the same dataset.

RESULTS ON DATASETS WITH GROUP STRUCTURES: For
datasets with group structures, the standard feature selection al-
gorithms MIFS, JMI, mRMR and RELIEF crash when running
on the Madelon and Isolet datasets, and their performances
on the other three datasets are shown in Figure 2. With the
whole training sets, their best accuracies are only close to 0.7.
Obviously, the standard feature selection algorithms cannot fit
datasets with group structures vary well.

Table II lists the experimental results of classification
accuracy (%), the number of selected features (in (•)), and
the number of selected groups (in [•]) on 5 datasets with
group structures using 8 feature selection algorithms. Several
observations can be drawn from Table II. First, the accuracies
of almost all algorithms increase with the number of training
instances. Second, OSFS and Fast-OSFS select compact fea-
tures, however, their accuracies are not as good. For instance,
on the Multi-Features dataset with the entire training set, they
both select the least number of features (12) but with the worst
accuracy (71.88%). Third, α-investing and Grafting have good
accuracies especially with a large training set, but they both
tend to select too many features. For example, they select
more than 90 features when using the whole training sets on
the Multi-Feature and Isolet datasets while others only select
about 30 features. Fourth, all algorithms except Group Lasso
and GFSSF• select too many groups, which means they try
to select features from different groups. Although the selected
subset may have a good enough accuracy, it’s hard to interpret
or just meaningless. Overall, the results of Group Lasso and
GFSSF• are the best as they can effectively utilize the group
structures to guide their selection processes.

For a better visualization, Figure 3 presents the compar-
isons between Group Lasso (accuracy 	, number of selected
features 
, number of selected groups �) and GFSSF• (accu-
racy ∗, number of selected features ×, number of selected
groups +). Due to space limitations, only comparisons on

1113



0

5

10

15

20

25

30

# 
of

 s
el

ec
te

d 
fe

at
ur

es

0

2

4

6

8

10

12

14

16

18

20
# 

of
 s

el
ec

te
d 

gr
ou

ps

1 2 3 4 5

0.7

0.8

0.9

1

# of Trainning Instances (× 200)

A
cc

ur
ac

y

 

 

(a) Multi-Features
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(b) Madelon
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(c) Isolet

Fig. 3: GFSSF• vs Group Lasso on 3 Datasets with Group Structures

the Multi-Features, Madelon, and Isolet datasets are shown
in Figure 3. One can easily observe that our proposed method
GFSSF•, has achieved higher accuracies yet with less features
and groups, and clearly outperforms Group Lasso on all of the
five datasets with group structures.

VI. CONCLUSION

In this paper, we have proposed a novel online algorithm
for group feature selection with streaming features. The pro-
posed algorithm, performing selection at both the group level
and the individual feature level, is more efficient than existing
algorithms which select only at the feature level. Besides, a
user can specify the group size to infinity, which transfers it
from group feature selection to traditional feature selection.
Two variants of the proposed algorithm are compared with
state-of-the-art algorithms in different models and scenarios.
Our comprehensive experimental studies have demonstrated
that the proposed method can select less features and groups
for higher classification accuracies on datasets with or without
group structures.
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