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Abstract—This paper presents a new algorithm, Reinforced
and Informed Network-based Clustering (RINC), for finding
unknown groups of similar data objects in sparse and largely
non-overlapping feature space where a network structure
among features can be observed. Sparse and non-overlapping
unlabeled data become increasingly common and available
especially in text mining and biomedical data mining. RINC
inserts a domain informed model into a modelless neural
network. In particular, our approach integrates physically
meaningful feature dependencies into the neural network
architecture and soft computational constraint. Our learning
algorithm efficiently clusters sparse data through integrated
smoothing and sparse auto-encoder learning. The informed
design requires fewer samples for training and at least part of
the model becomes explainable. The architecture of the rein-
forced network layers smooths sparse data over the network
dependency in the feature space. Most importantly, through
back-propagation, the weights of the reinforced smoothing
layers are simultaneously constrained by the remaining sparse
auto-encoder layers that set the target values to be equal
to the raw inputs. Empirical results demonstrate that RINC
achieves improved accuracy and renders physically meaningful
clustering results.

Keywords-Unsupervised Learning, Clustering, Artificial Neu-
ral Networks

I. INTRODUCTION

The exploratory and unsupervised nature of a clustering
task inherently determines that it is an ill-posed problem in
contrast to supervised learning in machine learning [1]. The
challenges of clustering include 1) A clustering algorithm
may produce solutions seem equally plausible without prior
adequate knowledge about the data domain, or may produce
meaningless results if it has erroneous assumptions about
the underlying data distribution. Therefore integration of any
possible prior information about the data domain is desirable
for a proper clustering solution [2]. 2) Every clustering
algorithm seeks a way to find groups of similar objects.
It is crucial in clustering analysis to calculate similarity
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between two vectors of data objects. Curse of dimensionality
in high dimensional space makes similarity measurement for
sparse data extremely challenging [3]. 3) Data collected
in text mining and biomedical data mining, especially in
cancer research, are highly variable in nature. For example,
there are not clearly defined, well-accepted definition of
molecular subtypes in most cancers and in the precise
identification of molecular subtypes in disease remains an
open problem [4]. Complex diseases such as cancer call for
data-driven machine learning algorithms that can identify
disease subtypes, differing in response to therapy, recurrence
risk, and overall survival.

In this paper, we present a new algorithm, called
Reinforced and Informed Network-based Clustering (RINC),
for finding clusters in sparse and largely non-overlapping
feature space where a network structure among features can
be observed from domain. Our approach integrates physi-
cally meaningful feature dependencies into neural network
architecture and soft computational constraint design and
efficiently clusters sparse data through integrated smoothing
and sparse auto-encoder learning , which will increase the
information entropy in the model, decrease the uncertainty of
the results, without adding more variables to the model. We
leave the things we are uncertain about flexible to change,
and only cut out the edges less possible. The informed design
requires less samples for training and at least part of the
model becomes explainable.

The use of neural networks allows the implementation
with multi-layered, arbitrarily non-linear structures, which is
essential for addressing the complexities of highly nonlinear
real datasets [5]. However, a standard neural network, given
its data hungry nature, cannot achieve its full potential when
data is sparse and samples sizes are hundreds of orders of
magnitude smaller than the dimension of the feature space
[6]. Our model consists of integrated layers of informed
and reinforced network smoothing and sparse auto-encoder.
The architect of hidden layers incorporates existing network
dependency in feature space. The reinforced network lay-
ers smooth sparse data over the network structure. Most



importantly, through back-propagation, the weights of the
reinforced smoothing layers are simultaneously constrained
by the remaining sparse auto-encoder layers that set the
target values to be equal to the raw inputs.

Moreover, empirical results demonstrate that RINC out-
performs competitors and achieves improved accuracy and
render physically meaningful clustering results. Thus, our
main contributions are as follows.

1) Robustness on sparse and non-overlapping data. RINC
integrates prior domain knowledge into the learning
model in forms of architecture, network smoothing,
and regularization. It achieves good average per-
formance for finding clusters in sparse and non-
overlapping feature space.

2) Information Integration. RINC optimally puts domain
knowledge into a new design of reinforced smoothing
structure and auto-encoder.

3) Physically Meaningful Clustering Results. In our em-
pirical studies, successful clustering is obtained with
clinically relevant outcomes.

II. RINC: REINFORCED AND INFORMED
NETWORK-BASED CLUSTERING

A. Problem Statement and Notations

Our RINC neural network model is designed to deal with
non-overlapping sparse data. The cost function of the neural
network essentially helps us to dynamically decide clusters
during the training process.

The key points in our overall cost function are: 1) sparsity
and non-overlap: integrating smoothing operations in a
reinforced and informed neural network structure; and 2)
non-overlap: enforcing the inter-feature graph structure in a
“guided auto-encoder.”

Our proposed cost function measures how well a neural
network does with respect to its given training samples and
the expected outputs:

Cost = Lossα +Regα, (1)

where Lossα is the inner loss that oversees both
data smoothing and auto-encoder learning, and
Regα is the regularization that guides the auto-
encoder. In particular,Lossα = ||X − WαH||22 ,
Regα = λTrace(HLαH

T ). Let X ∈ IRm×n denote
the raw input data matrix with n features and m samples,
H ∈ (IR+)k×n represent the decoder weight matrix
that has k suggested clusters , λ be the regularization
hyper-parameter, and Wα ∈ (IR+)m×k represent the vector
of the hidden neurons of the auto-encoder. H contains the
edges that connect the 2nd layer neurons to W hidden
neurons. The 2nd layer neurons are iteratively smoothed
by defusing the feature values through the neighboring
features as determined by the inter-feature relation network.
Here we choose the activation functions of the neurons

Notation Description
n # of features
m # of samples
k # of clusters
p # of smoothing operation in each iteration
X Input sample matrix
xi ith sample vector
xαi Smoothed ith sample vector
Wα Encoded sample matrix
wαi Encoded vector corresponds to the ith sample
S,Lα Supporting matrices
H ,H∗ Decoder and Encoder matrices
α Smoothing parameter
η Learning rate
λ Regularization hyper-parameter

Table I: Notation Table

that can produce non-negative values, such as a rectified
linear unit (ReLU), to produce more interpretable clustering
result. The input of auto-encoder is the smoothed data. The
subscript α of W is the smoothing hyper-parameter used
by the first two layers smoothing unit. Finally, Lα ∈ IRn×n

is a supporting matrix, obtained by the Laplacian of the
inter-feature relation network. Figure 1 represents an
schematic overview of the model.

To help understand the algorithms and formulas in this
paper, We list the notations used in the RINC model in
Table I.

B. Informed Design: Integrate Inter-feature Relation Infor-
mation into the Design of Neural Network Architecture

Non-overlapping and sparse datasets are naturally hard to
cluster, but we can use smoothing methods to eliminate the
non-overlapping property and make the datasets less sparse.
Our approach to do the smoothing process is integrate
inter-feature relation information in the clustering problem.
One of the key contributions of our model is that unlike
other existing methods, where smoothing and subsequent
clustering are performed independently, we integrate these
operations into a unified neural network framework.

Let G = (V,E) denote a inter-feature relation network,
with V representing vertices (nodes) and E representing
edges. Nodes of the inter-feature relation network are par-
titioned by V = Vinf ∪ Vaff , where Vinf denotes the set
of influencer features and Vaff denotes the set of affected
features. Existence of a inter-feature relation between a
influencer feature vinf ∈ Vinf and an affected features
vaff ∈ Vaff , implies an edge vinf → vaff in the
network. We denote this edge by Einf,aff = (vinf , vaff ).
Let σ(vaff ) = {vinf |(vinf , vaff ) ∈ E} and define the
smoothing matrix

S = D−1/2AgD−1/2. (2)

Here Ag is the n × n adjacency matrix of the inter-feature
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Figure 1: a) Overview of RINC model. The input, smoothing, clustering input and output node numbers are equal to the
number of features. The intermediate layer in clustering structure has the number of nodes equal to the number of clusters
we want to find in the datasets. b) The smoothing structure uses a recursively reinforced structure to do multiple smoothing
operations described in Equation 4. S in the formula is the inter-feature network connection between these two layers
described by Ag in Equation 3. c) Illustrating examples of the raw data and smoothed data. We show about 1000 genes over
the 92 Adenoid Cystic Carcinoma cancer patients. Black means the patient’s gene related to that position is not mutated,
and white means mutated. After smoothing by gene-interaction, sparse raw data start to present meaningful patterns.

graphic network, where

Agij =

{
1, i 6= j and σ(vaffi) ∩ σ(vaffj ) 6= ∅
0, otherwise

(3)

and D is a diagonal matrix with Dii equal to the sum of
the ith row of Ag . Let A0 denote a normalized input vector
with A ∈ {0, 1}n and let α ∈ (0, 1). Smoothing of A0 over
the network is then obtained by [7]:

At+1 = αSAt + (1− α)A0. (4)

Note that as t → ∞, At will converge to a stable solution
A∗, which is the smoothed A0 over the network. We re-
formulate Equation 4 as follows to facilitate neural network
implementation:

xαi ← αSc+ (1− α)xi, c← xαi (5)

here xi is initialized as the input vector of the ith sample,
and xαi is the smoothed input of the ith sample. The vector
c conceptually corresponds to a layer of the neural network
that stores and transfers information among different sam-
ples. We refer to this layer as the “context” layer (the first
layer in Figure 1).

C. Informed Design: Integrate Inter-feature Relation Infor-
mation into Regularization

We design a sparse auto-encoder under a soft constraint of
inter-feature network structure. We also take an additional
step to apply activation function on the encoded layer to
ensure the encoded results are non-negatives. Non-negativity
on the encoded layer produces interpretable clustering results
that are also desirable in scientific domains [8]. We connect
this auto-encoder to the output from previous smoothing
units and build everything into one neural network. We
impose a regularization based on inter-feature relation in-
formation to guide the sparsity and increase interpretability
of the results in a physically meaningful way. As before, let
xαi be the smoothed input, xi the ith original input in the
dataset X , H∗ the encoder matrix, H the decoder matrix,
and w the encoded vector. The auto-encoder performs the
following operations:

ReLu(xαiH
∗) = wαi, wαiH ≈ xi (6)

Here ReLu(x) = max(0, x). Most importantly we enforce
a similarity constraint based on the network structure among
features, i.e., we would like to bring data samples in close



proximity in the inter-feature network closer to each other.
This can be achieved by enforcing a network-based `2
penalty [9] Regα = trace(HLαH

T ) where

Lα = G−Asmp (7)

is the graph Laplacian and Asmp is the feature adjacency
matrix based on samples, defined by

Asmpij =

{
1, if xi ∈ NNq(xj) or xj ∈ NNq(xi)
0, otherwise

(8)

Here G is a diagonal matrix with Gii equal to the sum of
the ith row of Asmp and NNq(xi) denote the q nearest
neighbors of sample xi. The distance we used is a mod-
ified Euclidean distance between the samples which each
dimension can be replaced by any neighbour according to
the inter-feature graph structure of the features. i.e., consider
two samples a and b that have different values on feature i. If
ai = 1 but bi = 0, where ai and bi are normalized between
0 and 1. Samples a and b are faraway in the ith dimension
in the original feature space due to their completely different
values. But if a and b are related via the inter-feature relation
network, ∃j, vaffj = 1 ∈ σ(vaffi), RINC will bring a and
b closer.

D. Combine Computational Problems Into One Objective
Function

Figure 1 shows the overall design of RINC, which is
guided by the principle of inter-feature relation information.
The inputs of RINC model are the raw non-overlapping and
sparse data where a network structure among features can be
observed. The output of RINC is the clustering assignment
of the objects. The number of clusters is a user defined
parameter k. The clustering assignment of the ith sample
is calculated by

yi = argmax(wαi), Y = argmax(Wα) (9)

Same as in a regular neural network, the RINC algorithm
proceeds by a forward information propagation for each
sample, followed by an error back propagation and the
subsequent weight update. These are straight forward, so
we do not discuss update formulas in this paper.

III. EMPIRICAL STUDY

We test RINC model with respect to accuracy, robustness,
and clinical relevance of the clustering solutions in cancer
subtyping. We evaluate RINC using carefully designed sim-
ulation data and real-world cancer datasets. In particular, we
design experiments to evaluate the following properties of
the model RINC:

• Evaluation on synthetic data: Can the reinforced
smoothing structure in RINC accurately and automati-
cally learn the value of smoothing factor α from data?
How does RINC improve the performance of clustering

using gene to gene interaction information in neural
network structure and regularization?

• Effectiveness in real cancer data including two solid
tumors and a liquid cancer: Can RINC identify clin-
ical relevant cancer subtypes, in comparison with its
competing methods in real gene mutation cancer data,
with higher stability?

It is now widely accepted that mutation in gene sets,
if they are part of important pathways such as apoptosis
and cell proliferations, is a more significant contributor to
cancer than single gene mutations [10]. So we design
simulated gene mutation data sets to “mimic” this biologi-
cal property, that aggregation of sporadic mutations along
biological pathways can be a better predictor of tumor
biology and cancer subtypes than single gene mutations. We
construct gene relation networks using real gene regulatory
networks. For the choice of the gene regulatory network, we
use real causal/non-causal protein-protein and protein-gene
interactions in the STRING DB database [11]. This network
consists of approximately 40, 000 nodes and 400, 000 edges.

Automatically Learning the Smoothing Factor α From
Data. To verify whether our reinforced smoothing layers
can accurately find the appropriate α, we first disconnect the
smoothing layers from the autoencoder part and separately
test this unit. We use the real uterine endometrial carcinoma
somatic mutation datasets, obtained from the TCGA (the
Cancer Genome Atlas) data portal [12]. Only mutation
data generated using the Illumina GAIIx platform were
retained, and patients with fewer than 10 mutations gene
were discarded. The final dataset includes 248 patients with
mutations in 17, 968 genes. We filter out those genes not in
the gene regulatory network, and get a binary matrix X of
0 and 1 values in dimensions 248 by 6, 324. We then use
Equation 4 to compute the converged value Y with a target
α using the ground truth value α0. According to the proof
done in [7], we can always get a unique converged value
Y . In our experiments, our model can find the accurate α
with |α − α0| ≤ 1e−3 within 30 iterations. We let the sub-
model start with a random α ∈ (0, 1), and the value of
the cost function is the root mean square error between the
sub-model output and converged value Y . The sub-model
updates α during each iteration. We test the smoothing unit
1000 times using 1, 000 random values as the initial values
for α.

Assessing the significance of integration of biological
interaction to clustering. The gene regulatory network have
clear influencer features, which are the regulators. And it
also has clear affected feature, which are the affected genes
by those regulators. Following Equation 3, we can build the
adjacency matrix S.

We randomly select two non-overlapping paths of fixed
length in the real gene relation network calculated from
the STRING DB database. Mutations along each path are
assumed to associate with a subtype, resulting in a total
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Figure 2: Models performance on simulated data using real
gene relation networks.

of two subtypes. Secondly, we simulate mutational profiles
by mutating genes with a background probability 0.001
independent of the paths, and a higher probability with
hundreds of times of background probability if genes fall
on one of the paths.

Notice that, when we simulate the samples, we are using
pathways which consider really functional in domain.

In our experiments, each sub-type of the simulated data
has 200 samples, 6,000 features, and uses one pathway of
the gene relation networks. The features of the samples are
the genes appear that in the gene relation networks. Notice
that we integrate the complete gene regulatory network to
the RINC model, thus our model has the capacity to simulate
any possible pathways. We use the simulated data with
pathway length equal to 15 and mutation rate equal to 0.5
to perform clustering with the following different design of
neural networks:

1) A classic auto-encoder without any modifications,
2) A regularized auto-encoder without pre-processed

smoothing unit,
3) A classic auto-encoder with fixed factor smoothed

inputs but without regularization,
4) RINC (Model with informed regularization and inte-

grated reinforcement informed smoothing layers).

Figure 2 summarizes the clustering results. We can ob-
serve that either the integration of gene-network based
regularization or the smoothing operation can improve the
performance of the plain auto-encoder. The RINC model
has the best clustering accuracy with relatively smaller
variance, compared to the individual use of smoothing unit
and regulated auto-encoder. Clustering accuracy is calculated
as follows. We enumerate all object sample pairs. For each
simulated sample pair that belongs to the same sub-type
in the ground truth, if they are still reported in the same
clusters, then it is counted as a true positive. Otherwise it is
considered incorrect.

Consensus Matrices
k=2 k=3 k=4

Survival Rate

2000

1.0

Days to Death
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1.0 1.0
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k=2 k=3 k=4

Figure 3: Models performance evaluations using ACC cancer
consensus matrices and survival rate graphs and calculated
using numbers of clusters k=2,3,4. The consensus matrices
are drawing upon 20 runs, the graph shows RINC is a
method which have high consistency. These graphs shows
RINC successfully find the subtypes that consist of cancer
patients with different survival rates.
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Figure 4: Benchmark between NBS and RINC on ACC,
LAML, LGG datasets. We expect the line of two clus-
ters(blue and orange) as spread as possible. The results show
RINC slightly better spread the group of patients, which
means RINC can do a relatively better work on cancer
subtyping with respect to clinical observation of survival
rates.

The state-of-art models such as LDA, LSA and NMF
cannot deal with such sparse, high-dimensional, non-
overlapping samples. They are far below our RINC model
and classic auto-encoder. We use Python machine learning
library from PyPI for the LDA, LSA, and NMF imple-
mentation [13]–[15]. The NBS [16] model is the state-of-
art NMF based model published in the journal of Nature
Methods for cancer patient clustering with gene mutation
data problem. It is our closest rival method, we thus perform
a comprehensive comparative study in the following section
using three different real cancer datasets in solid tumors and
a liquid cancer.

A. Cancer Subtyping evaluation using Real Cancer Data

We use 3 datasets which are the gene mutation data of pa-
tients with Adenoid cystic carcinoma(ACC), Acute Myeloid
Leukemia(LAML) and Brain Lower Grade Glioma(LGG).
ACC and LGG are solid tumor cancer type and LAML is



liquid cancer type. The ACC dataset has 10,213 features, 92
samples, and 0.12 overlapping ratio. The LAML has 8,175
features, 196 samples, and 0.02 overlapping ratio. The LGG
has 13,229 features, 296 samples, and 0.29 overlapping ratio.
We evaluate the performance of our model with consensus
matrices and survival rate graphs, to show the robustness of
our proposed method RINC. The experimental results on the
ACC dataset are available in Fig 3. The 20-run consensus
matrices show RINC consistently provides stable results.

An inconsistent clustering algorithm will produce consen-
sus matrices that are blurry without clearly identifiable clus-
ters. But in the consensus matrices of RINC, we can clearly
see several blocks in the graph for clustering assignment 2,
3, and 4, which means RINC will converge to the similar
clustering assignments in the most of cases.

In clinical observation, two groups of patients with dif-
ferent cancer subtypes but under the same treatments should
have different survival rate. If the clustering result is not
associated with the true cancer sub-type, the survival rate
graph of these two groups of patients may be overlapped
and unseparated.

The survival rate graph based on RINC results shows
this point well, especially for the group which have higher
overall survival(Fig 3).

We also benchmark the performance of our model with
the competing method NBS, which is considered as the
state-of-art cancer subtyping method using gene mutation
data. Because there are few models that deal with the non-
overlapping feature space sparse datasets, LDA, LSA, and
NMF barely can produce any meaningful results. NBS [16]is
a model published in Nature Methods and is a more
advanced implementation of plain NMF, so we do not
present comparisons on plain NMF. NBS has a strong hyper-
parameter tuning approach and also takes advantage from
gene relations.

Because there is no ground truth for comparing clustering
results on the three unlabeled cancer datasets, we use the
survival rate graph to illustrate the difference between RINC
and NBS. The results in Fig 4 are the median over 20
runs, which show that RINC has better spreads the group
of patients than NBS.

IV. CONCLUSION

In summary, we present a new learning algorithm to
address the challenges of sparse and non-overlapping data.
Our RINC model incorporates a network smoothing pro-
cedure through a reinforced module in a neural network,
coupled with an auto-encoder module, designed to perform
advanced clustering through one overall objective function.
The auto-encoder module incorporates inter-feature relation
information through network-based regularization based on
the graph Laplacian, resulting in optimal model sparsity and
higher interpretability. Importantly our smoothing procedure
is integrated into the cost function, eliminating the need for

manually adjustment of smoothing parameters. We simulate
the data using biologically motivated hypothesis on tumor
biology and benchmark our method with stat-of-the-art mod-
els using simulation data and real cancer data. Our model is
implemented in Python and code is available upon request.
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