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ABSTRACT
In stock markets, an emerging challenge for surveillance is
that a group of hidden manipulators collaborate with each
other to manipulate the price movement of securities. Re-
cently, the coupled hidden Markov model (CHMM)-based
coupled behavior analysis (CBA) has been proposed to con-
sider the coupling relationships in the above group-based
behaviors for manipulation detection. From the modeling
perspective, however, this requires overall aggregation of the
behavioral data to cater for the CHMM modeling, which
does not differentiate the coupling relationships presented
in different forms within the aggregated behaviors and de-
grade the capability for further anomaly detection. Thus,
this paper suggests a general CBA framework for detecting
group-based market manipulation by capturing more com-
prehensive couplings and proposes two variant implementa-
tions, which are hybrid coupling (HC)-based and hierarchical
grouping (HG)-based respectively. The proposed framework
consists of three stages. The first stage, qualitative analysis,
generates possible qualitative coupling relationships between
behaviors with or without domain knowledge. In the sec-
ond stage, quantitative representation of coupled behaviors
is learned via proper methods. For the third stage, anomaly
detection algorithms are proposed to cater for different ap-
plication scenarios. Experimental results on data from a ma-
jor Asian stock market show that the proposed framework
outperforms the CHMM-based analysis in terms of detecting
abnormal collaborative market manipulations. Additionally,
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the two different implementations are compared with their
effectiveness for different application scenarios.
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1. INTRODUCTION
For many decades, human behavior analysis has been ex-

tensively investigated in many fields, such as social and be-
havioral sciences [5, 13] and computer science [10]. For
simplicity, ‘behavior’ in this paper is used as a synonym
of ‘human behavior’, which refers to an action from a hu-
man and usually interacts with behaviors of his/her own
and of other actors [3]. ‘Coupled’ in this paper refers to ac-
tors and their behaviors having certain relationships which
are not independent. The interactions within an actor are
referred to as intra-coupled relationships (interchangeable
with ‘intra-couplings’) while inter-coupled relationships (in-
terchangeable with ‘inter-couplings’) are between behaviors
of different actors [3]. Taking the couplings into account
is critical for a deep understanding of group behaviors in
many real-life scenarios. For instance, in stock markets, in-
vestors’ trading behaviors are not isolated but affected by
each other, which is caused by the supply-and-demand na-
ture of the markets. Most of existing research efforts on
behavior studies, however, focus mainly on individual be-
haviors [4]. A comprehensive analysis of intra and inter-
coupled relationships is beyond current individual behavior
analysis techniques, to the best of our knowledge. In addi-
tion, the intra- and inter- couplings between behaviors are



usually implicit or hidden, making it even more challeng-
ing to define, model and analyze the coupling relationships
among behaviors in a group.

One useful application of considering these intra and inter-
couplings is to detect abnormal coupled behaviors in stock
markets [4]. As mentioned before, the behaviors of investors
are inherently coupled with each other. Meanwhile, on some
trading days, some investors (termed as ‘manipulators’) may
intentionally arrange trading behaviors for the purpose of
exceptionally high profit, which is not allowed by the corre-
sponding regulations and could bring great losses to other
investors. Any financial market regulators are keen to effec-
tively detect these coupled trading behaviors and discover
such manipulations. As initial attempts for this purpose,
the CHMM-based CBA [4] suggests a method to implicitly
represent the couplings in statistical models, such as CHMM
[2]. It regards all the actors as a whole group, aggregates
their behaviors for each time interval and analyzes the aggre-
gated behaviors based on a CHMM. This is feasible to some
extent but has some limitations: e.g., segmentation and ag-
gregation of the behaviors may lose important coupling in-
formation within these aggregated behaviors, which may fur-
ther deteriorate the performance of anomaly detection. In
other words, capturing richer couplings for coupled behav-
ior analysis may enhance the capability of detecting manip-
ulations. Motivated by this, this paper proposes a general
CBA framework to capture richer coupling relationships be-
tween behaviors, which is further used to detect anomalies in
group-based behaviors. By capturing more comprehensive
couplings between the behaviors, better anomaly detection
performance is expected.

The main contributions of this paper are summarized as
follows.

• We extend the group-based CBA to a general frame-
work to cater for more flexible and comprehensive anal-
ysis of coupled behaviors, which is expected to have
better capability to detect abnormal behaviors. To
achieve this, two stages: qualitative analysis (for re-
ducing the possible coupled relationships space) and
quantitative analysis (for proper numerical modeling
of the couplings) are proposed to efficiently model the
underlying rich coupling relationships in the behaviors.

• Two variant implementation approaches are proposed
to model more comprehensive couplings. One is data-
driven, which learns the coupled relationships directly
from the data and the other is domain-driven, which
integrates some domain knowledge for learning the cou-
plings. These two approaches are useful for different
application scenarios when domain knowledge is un-
available or available.

• The proposed framework has been tested on a real-
world data set from a major Asian stock market to
detect collaborative manipulations in stock markets,
covering around 550,000 tick-based transactions on 388
valid trading days. We test different technical signifi-
cance of the identified suspicious manipulations against
the benchmark of miscellaneous alerts fired on the real-
time transactions. The results show the advantages
of our proposed framework compared to the previous
CHMM-based framework. More specifically, the two
proposed approaches are compared to reach the con-

clusion that they are superior to the CHMM-based
CBA framework in different application settings.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the proposed general CBA framework. Then
the hybrid coupling-based implementation of the proposed
framework is described in Section 3, when assuming there
is no domain knowledge of the coupling relationships. Sec-
tion 4 describes another variant of the proposed framework
based on a hierarchical grouping representation, when some
domain knowledge is available. Section 5 reports the exper-
imental results while conclusions are drawn and future work
is discussed in Section 6.

2. CBA FOR GROUP-BASED MANIPULA-
TION DETECTION

The proposed framework consists of three key stages: qual-
itative analysis, which converts the transactional data to
proper representations and provides a flexible coupling struc-
ture for the next-stage quantitative coupling relationships
modeling; quantitative analysis, which characterizes the cou-
pled behaviors by learning the corresponding model and is
helpful for further analysis; and anomaly detection, which is
the final stage of checking whether or not the new coupled
behaviors are abnormal. The following sections describe how
the proposed framework works, which is depicted in Fig-
ure 1.

2.1 Qualitative Analysis
Here we first briefly review the concept of coupled behav-

iors. Suppose there are I actors, and an actor i undertakes
mi behaviors bi1,bi2, · · · ,bimi . Each actor i’s jth behav-
ior bij is associated with a behavioral type T (bij) = tbij

(e.g., buy, sell and trade.). Each behavioral type t ∈ T has
a number of associated properties Pt = (P t

1 , P t
2 , · · · , P t

n)(n
may vary for different t value). Thus, each behavior bij is
associated with a set of behavioral property value (a vector)

(p
tbij

1 , · · · , p
tbij
n ) (e.g., price and volume) determined by its

behavioral type tbij . A behavior feature matrix FM(b) for
all actors for a specific period of time can be then repre-
sented as follows [3]:

FM(b) =




b11 b11 · · · b1mmax

b21 b21 · · · b2mmax

...
...

. . .
...

bI1 bI1 · · · bImmax


 . (1)

where mmax = max{m1, m2, . . . , mI} , and for each actor
i, if mi < mmax the corresponding element bij(mi < j ≤
mmax) is defined as ∅, which means no action taken. Thus,
the intra-couplings are reflected by the relationship between
elements within one row of the above matrix, whereas the re-
lationships between elements of different rows indicate the
inter-couplings. Actor i’s behaviors bij are intra-coupled
with other behaviors of the same actor in terms of the cor-
responding function θi

k(·)(1 < j ≤ mi, k 6= j) and inter-
coupled with other actors’ behaviors in terms of the cor-
responding function ηi

k(·)(1 < k ≤ I, k 6= i), with non-
determinism.

The behavior feature matrix defined in Equation 1 repre-
sents a group of behaviors that are coupled for analysis. To
consider the coupled relationships, the space for analyzing
the couplings of these behaviors is almost infinite. For a
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Figure 1: The Workflow of the Proposed Framework.

behavior bj among n coupled behaviors, it can be coupled
to any one of the remaining n − 1 behaviors and the corre-
sponding search space is O(C1

n−1) = O(n − 1). Generally,
if it is considered to be coupled to any k, 1 ≤ k ≤ n − 1,

the possible search space can be O(Ck
n−1) = O( (n−1)!

k! (n−1−k)!
).

Thus, the sum of the above search space could be O(2n−1),
which means the computational complexity is exponential
to the increase of the number of coupled behaviors. This is
intractable when the number of coupled behaviors is large.
To avoid this, the CHMM-based framework aggregates all
the behaviors within time intervals and considers to model
the couplings between these interval aggregated activities.
The above approach may lose important coupling informa-
tion within these aggregated behaviors, which may be useful
for further anomaly detection. In this paper, to enrich the
modeling capability of the CBA framework, we propose to
integrate qualitative analysis into the CBA framework. To
achieve this, two different strategies are designed, which are
further discussed in Section 3 and Section 4. The former
implementation is designed for the settings with no prior do-
main knowledge about the coupling relationships. Then we
assume hybrid couplings exist between the behaviors, which
means behaviors are associated with each other in a compli-
cated structure of multiple different coupling relationships
[3]. By contrast, when some domain knowledge is known
about the couplings, the latter implementation is adopted.
In this paper, we consider the hierarchical coupling struc-
ture [3], which means behaviors are coupled with each other
in a hierarchical structure (determined by the corresponding
grouping structure of the actors). All the above considera-
tions are advantageous compared to the CHMM-framework
because the possible coupled relationships we consider here
are more comprehensive.

2.2 Quantitative Analysis
After the qualitative analysis of the coupled behaviors,

the possible coupling relationships between behaviors are ex-
panded and efficiently constrained, compared to the CHMM-
based framework. Then how to quantitatively model the
couplings becomes the key point and we solve it by modeling
the autocorrelations that exist in coupled behaviors. More
formally, for a set of coupled behaviors b, there could be
possible coupled relationships (θ(·), η(·)); Then the autocor-
relation for coupled behaviors with respect to one behavioral
attribute P can be defined as follows:

Definition 1 (Coupled Autocorrelation). It mea-
sures the dependence among the values of a behavioral vari-
able P ∈ Pt defined on the coupled behavior pairs (θ(·), η(·)).
Given a set of coupled behavior pairs (θ(·), η(·)), the auto-
correlation of a continuous variable can be calculated as:

ca =

∑
i1,j1,i2,j2s.t.(bi1j1 ,bi2j2 )∈(θ(·),η(·))(pi1j1 − P̄ )(pi2j2 − P̄ )

∑
is.t.i,js.t.bij∈(θ(·),η(·))(pij − P̄ )2

Motivated by the considerations of the coupled autocorre-
lations for quantitative analysis, different strategies are pro-
posed for different variant CBA frameworks to efficiently
consider these coupled autocorrelations for modeling the
coupled behaviors.

2.3 Anomaly Detection Techniques
To determine whether the new coupled behaviors bk are

normal or abnormal, we choose to calculate the likelihood
given the observations of the coupled behaviors based on the
established normal model M . The higher the likelihood of
the coupled behaviors bk, the more likely bk conforms to be
normal. The following two sections will describe two variant
implementations for the general framework proposed in this
section.

3. THE HC-BASED FRAMEWORK
When there is no prior knowledge of how the behaviors are

coupled, to comprehensively capture the couplings with rea-
sonable search space is challenging. In addition, to avoid the
loss of coupling information of aggregating all the behaviors
within time intervals, we alternatively consider the possible
hybrid couplings within the behaviors. To achieve this, we
use links to indicate possible coupled relationships that are
suggested by some of the qualitative behavioral properties of
the behaviors, which can be seen as qualitative analysis. This
is advantageous compared to the CHMM-framework because
we do not forcedly aggregate the behaviors within one time
intervals and makes it possible to consider the couplings be-
tween them. Then the remaining behavioral properties can
be defined as quantitative properties and used for learning
the coupling relationships between the behaviors from the
perspective of quantitative analysis. The formal definition
of two such properties is as follows.

Definition 2 (Qualitative Property). A qualitative
property R ∈ P refers to the behavioral property which is
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Figure 2: An Example of Qualitative Analysis.

used to generate the possible underlying coupling relation-
ships between behaviors, usually user-defined.

Definition 3 (Quantitative Property). An quanti-
tative property A ∈ P refers to the behavioral property which
is used to learn the coupling relationships between behaviors.

3.1 Qualitative Analysis: Link Generation
Based on the qualitative properties, Algorithm 1 describes

the procedure to generate links according to the qualitative
properties. In Algorithm 1, steps 2 to 8 form an inner loop
process to generate links between behaviors which have the
same values as the qualitative property and steps 1 to 9
form an outer loop process to generate the corresponding
links for the behaviors according to every reference property.
A toy example of the link generation process is shown in
Figure 2, which transforms the raw behaviors1 in the left
to the linked behaviors in the right. To be more specific,
in Figure 2, the behavioral properties of ‘buy’, ‘sell’ and
‘trade’ behaviors are: ‘Price’, ‘Volume’, ‘Time’ and ‘Order
No.’. The qualitative properties used are ‘Time’ and ‘Order
No.’ while the quantitative properties used are ‘Price’ and
‘Volume’ after the link generation. Then a group of coupled
behaviors can be represented by a typed attributed graph
GB = (VB , EB). The nodes VB represent behaviors (e.g.,
buyi(1 ≤ i ≤ 3), selli(1 ≤ i ≤ 4) and tradei(1 ≤ i ≤ 3)) and
the edges EB represent potential coupled relations among
the behaviors (e.g., the edges in Figure 2).

Algorithm 1 The Link Generation Algorithm

Input: A Group of Behaviors {bi},
A Set of Qualitative Properties {Rj},

Output: A Set of Generated Links {l}.
1: {l} → ∅
2: for all Rj in the set of qualitative properties do
3: for all values rjk of the qualitative property Rj do

4: if exists Rbm
j == rjk then

5: Add links {ln} between the behaviors {bm}
6: {l} → {ln} ∪ {l}
7: end if
8: end for
9: end for

3.2 Quantitative Analysis: Modeling Coupled
Behaviors via Relational Learning

1Each behavior here refers to a transaction record.

After obtaining the graph structure of the coupled be-
haviors, we explore the learning of couplings between the
behaviors in a numerical form. For a quantitative model to
describe the coupling relationships, we choose to learn the
joint probability distribution of these behaviors’ attributes
considering their coupled autocorrelations. Exact learning
of this joint probability is very computationally intensive
and we adopt an approximate approach by learning a set
of conditional prolixity distributions (CPDs) [12]. For each
quantitative behavioral property A ∈ A we try to learn the
probability distribution of its values conditioned on other
possible coupled behaviors’ behavioral attribute values (i.e.,
the CPD of A). Consequently, we approximate the joint
probability distribution of the coupled behaviors with a set
of CPDs. For this purpose, we introduce relational depen-
dency network (RDN) [12], to model the joint probability
distribution of the coupled behaviors since its key idea is
based on a set of CPDs.

3.2.1 Approximating the Joint Probability Distribu-
tion

The RDN learning algorithm uses pseudo-likelihood tech-
niques [12] to efficiently approximate the joint probability
distribution. Unlike relational Bayesian network (RBN) [8]
and relational Markov network (RMN) [14], it learns con-
ditional distributions independently, rather than jointly, us-
ing local conditional probability models, such as Relational
Bayesian Classifiers (RBCs). For example, considering the
coupled behaviors in Figure 2, for each behavioral property
of these coupled behaviors, the RDN learns a CPD model
and obtain a set of CPD models. The joint probability dis-
tribution model is formed by the integration of these models,
which becomes the quantitative model of coupled behaviors.
The next section describes how to learn these CPDs.

3.2.2 Modeling of the CPDs
In consequence, in order to model the coupled behaviors,

we could estimate a set of the CPDs of the quantitative
behavioral properties conditioned on other possible coupled
behaviors’ behavioral attribute values, and underline which
coupled autocorrelations between behaviors are considered.
To learn the CPD is challenging because of two issues: each
quantitative behavioral attribute instance could be condi-
tioned on different linked behaviors’ behavioral property val-
ues (e.g., heterogeneous structure of links and various behav-
ioral property types) and the linked behaviors to consider
could be limitless. To cater for the second issue, we must
determine how much should be modeled for the CPD of
each quantitative behavioral attribute instance. For compu-
tational simplicity, we may only consider two related behav-
ior links from the target behaviors for modeling the CPD.
The whole graph can then be decomposed into subgraphs
according to each quantitative behavior property and this
could be done by the visual query language QGraph [1]. A
toy example can be seen in Figure 3(a) and the quantitative
behavioral property A is one of the property of ‘trade’ be-
haviors (trade1 and trade2 in Figure 2). Then trade1 and
trade2 are transformed to two subgraphs with consideration
of coupled behaviors 1-link away (we could consider n-link
(n ≥ 1), but we only depict the 1-link situation for simplic-
ity).

After that, the aforementioned first issue can be solved by
“flatten” the subgraphs into propositional instances consist-
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(a) An Example of the Subgraphs for
Coupled Behaviors

A RF1 RF2 · · · RFn

trade1 x1 rf11 rf21 · · · rfn1

trade2 x2 rf12 rf22 · · · rfn2

...
...

...
...

...
...

(b) An Example of the Relational Fea-
tures for Coupled Behaviors

Figure 3: An Example of the “Flattened” Proposi-
tional Coupled Behavioral Data

ing of relational features RF1, RF2, · · · , RFn and the quan-
titative behavioral property A. Here we choose RBCs to
generate the relational features for simplicity and efficiency.
The relational features for one quantitative behavioral at-
tribute are the linked behaviors’ attributes and each at-
tribute contains multiple sets of values within the subgraph;
for example, considering the quantitative property A of the
‘trade’ behaviors as in Figure 3. The RBC considers all the
attributes associated with the linked behaviors ‘buy’, ‘sell’
and ‘trade’ and treats them as independent relational fea-
tures RF1, · · · , RFn. For any specific instance of RFi (1 ≤
i ≤ n), for example rfi1 is a multi-set of values rfi11, · · · , rfi1m

and these values are assumed to be independently drawn
from p(RF1|A). Then p(RF1|A) can be estimated by count-
ing the frequency of the values in all the multi-set instances
of RF1 and similar estimation can be done on p(RF2|A), · · · ,
p(RFn|A). The CPD p(A|RF1, · · · , RFn) can be estimated
as

αp(A)p(RF1|A)p(RF2|A) · · · p(RFn|A) (2)

where α is the normalized constant [12]. For example, with
respect to the quantitative property A, the coupled behav-
iors in Figure 3(a) can be transformed into Table 3(b) by
generating the relational features RF1, · · · , RFn. CPDA

for A then becomes p(A|RF1, RF2, · · · , RFn) and the joint
probability distribution of coupled behaviors becomes p(b) =∏

A∈A CPDA, which model the coupled behaviors.

3.3 Efficient Abnormal Coupled Behavior De-
tection

Training on a set of coupled behaviors ({bi}) is compu-
tationally intensive and the coupling relationships in some
{bi} may be similar. Thus, in order to relief the compu-
tational complexity and modeling efficiency, we propose a
match pursuit [11] like algorithm to only pick up a subset of
coupled behaviors to model.

Matching pursuit [11] is a type of numerical technique
widely used in signal processing. Informally speaking, the

basic idea is to find the best representation of a signal using
a subset of elements provided by a dictionary D. Similarly,
our aim is to find the best representation of a subset of cou-
pled behaviors among all groups of coupled behaviors. As
described in Algorithm 2, step 1 initializes the dictionary D
to all the set of training coupled behaviors. Then steps 2
to 11 choose the most representative groups of coupled be-
haviors and train a set of models Mi(1 ≤ i ≤ n). Finally,
steps 12 to 20 detect the anomaly based on the set of mod-
els. The training computational complexity is very inten-
sive when the number of coupled behaviors increase and our
proposed algorithm efficiently choose a small set of repre-
sentative ones, which improves the efficiency of the learning
process.

Algorithm 2 Matching Pursuit-like Anomaly Detection

Input: A Training set {bi} (1 ≤ i ≤ N),
A Testing set {bk} (1 ≤ k ≤ M),
Two Threshold Th0, Th1.

Output: An anomaly set A.
1: n ← 1,

D ← {b1,b2, · · · ,bN}
2: repeat
3: Train one Mn model on the first training sample

(sorted by temporal attributes, such as date.) cho-
sen from D.

4: for all bd (1 ≤ d ≤ N) in D do
5: Compute the likelihood of bd given the model Mn:

p(bd|Mn).
6: if p(bd|Mn) > Th1 then
7: Delete bd from D
8: end if
9: end for

10: n ← n + 1
11: until stop condition (e.g., D = ∅)
12: for all bk in the Testing set do
13: for i = 1 → n do
14: Compute the likelihood of bk given the model Mi:

p(bk|Mi)
15: end for
16: Dk = max{p(bk|Mi)} (1 ≤ i ≤ n)
17: if Dk < Th0 then
18: bk → A
19: end if
20: end for

4. THE HIERARCHICAL GROUPING-BASED
FRAMEWORK

Sometimes, some prior domain knowledge is known about
the possible coupling relationships among behaviors of some
investors. This provides a possible method to explore cou-
plings between behaviors of actors within certain subgroups
(at a local level), rather than taking the whole population
as a group (at a global level). Such analysis of behaviors
is crucial for capturing more comprehensive couplings exist-
ing in behaviors, which may be helpful to further detect-
ing abnormal coupled behaviors. As mentioned before, the
CHMM-based CBA framework may fail to explore some de-
tailed information of the couplings between behaviors, due
to the aggregation of all the actors’ behaviors, which makes
the modeling relatively coarse and in turn may render it less



capable to detect abnormal coupled behaviors. For this pur-
pose, with the presence of some useful domain knowledge,
we propose the corresponding hierarchical grouping-based
CBA framework below.

The qualitative analysis stage is to partition the whole in-
vestor population according to prior domain knowledge so
that the couplings between the behaviors in the resultant
sub-groups will be modeled more precisely. We define these
groups as ‘Particle Groups’. Performing CBA on behaviors
of these particle groups can lead to more precise modeling
of local interaction characteristics within local groups than
directly on the global population. However, dividing actors
into particle groups only cater for the couplings between
behaviors within each particle group, it does not necessar-
ily consider the couplings between behaviors from different
particle groups. To cater for between-group couplings, we
further propose a hierarchical clustering-based algorithm to
merge those relevant particle groups into larger groups until
finally into one super-group. Through this manner, the cou-
plings between behaviors from different particle groups are
expected to be captured. Then in the quantitative analysis
stage, the coupled relationships in different group levels are
also modeled. This hierarchical grouping strategy captures
behavior interactions at different group levels, therefore is
more effective to capture the more comprehensive couplings
within the coupled behaviors, which makes it possible for
detecting abnormal couplings more accurately. In the next
sections, we illustrate the details of this variant framework
for the general CBA.

4.1 Qualitative Analysis: Domain Knowledge-
driven Initial Grouping

In stock markets, investors may be intentionally or un-
intentionally grouped. Based on domain knowledge, stock
market surveillance experts often create rules according to
their judgement and group investors who are likely to co-
operate to have manipulative behaviors. As a result, an
empirical blacklist is often generated for further monitor-
ing. Such domain knowledge is very helpful for our initial
understanding of investors grouping. We model the normal
couplings in each group of investor behaviors, and build ini-
tial corresponding particle groups. This initial grouping of
the investors aims to divide them into small particle groups
so that the most likely coupled investors form into parti-
cle groups with similar coupled relationships. We define the
result of these groups as particle groups.

Definition 4 (Particle Groups). The particle groups,
which are represented by {PGj} (1 ≤ j ≤ N) are the par-
titioning result of actors {Ai} (1 ≤ i ≤ I) by the rule R(·)
made by domain experts:

R(·)|{A1, A2, · · · , AI} → {PG1, PG2, · · · , PGN}. (3)

This qualitative analysis stage is domain knowledge driven
and any useful information related to investors can be uti-
lized to group the investors. In this paper, except for trad-
ing record data, there is no additional information available
about the investors. Domain knowledge experts advise us to
consider the average ordering/trading volume of a trading
day for each investor as an initial grouping rule. Based on
such information and related domain knowledge, investors
are grouped as if they have similar ordering/trading volume
of a security. Because the abnormal collaborative behaviors

are more likely to happen in these predefined groups, it is
reasonable to model the normal couplings within the groups
and use the model to check the anomaly. By dividing the
actors into particle groups and performing CBA on them
separately, we can avoid the influence of roughly analyzing
all the investors as a whole group, which may weaken the
performance of the modeling. According to [4], we can con-
vert the behavioral data for each particle group into three
behavioral sequences, the ’buy’, ’sell’ and ’trade’ sequence,
in terms of the trading behavior types. For a particle group,
we can transfer the trading records related to them into three
coupled sequences. Further, in order to fit the behavior se-
quences to CHMM observation sequences for modeling, we
also convert them to interval activities to reflect the char-
acteristic of behaviors within the particle group during a
period, similar to [4]. This makes modeling the couplings
within these particle groups possible. However, this mecha-
nism of dividing actors into particle groups can only describe
the couplings between behaviors within each particle group,
while it may omit the couplings between behaviors from dif-
ferent particle groups.

To overcome this, we not only model the behavioral cou-
plings within particle groups but also merge the particle
groups into larger groups and consider the coupled relation-
ships in different group levels. To do this, we further de-
fine the distance/similarity measure based on the coupling
patterns of the two particle groups. Because of the variety
and dynamics of coupled behaviors, we merge those groups
having most similar coupling patterns first and then join
the remaining groups progressively into a super hierarchi-
cal group, within which there are many different levels of
groups. Through this way, the coupled relationships be-
tween the behaviors are hopefully captured in a finer gran-
ularity. The detailed definition for the similarity measure
for coupling patterns is discussed in the following. Each
CHMM represents the corresponding coupling pattern for
behaviors in each particle group, our proposed similarity
measure is based on the distance/similarity between two
CHMMs. Inspired by [7], we put forward a novel similar-
ity measure based on the Kullback-Leibler (KL) divergence
[9, 6], which is a standard measure for the similarity be-
tween probability density functions. To be more specific,
for two particle groups i and j, represented by λi and λj

respectively, there are corresponding interval activities sets
{bn,i

IA} (1 ≤ n ≤ N) and {bn,j
IA} (1 ≤ n ≤ N), where N

is the number of the trading days. The likelihood of the
behaviors bn,i

IA under λj is denoted as ξn
ij . For all the cou-

pled behaviors in the set {bn,i
IA}, we obtain a likelihood sub-

space ξij = {ξ1
ij , ξ

2
ij , . . . , ξ

N
ij }, which are “intelligently” sam-

pled points from the model space representing the fitness of
the coupled behaviors set to the CHMM λj . Similarly, we
obtain ξii = {ξ1

ii, ξ
2
ii, . . . , ξ

D
ii } to denote the fitness of the cou-

pled behaviors set {bn,i
IA} to the CHMM λi. If we normalize

ξij and ξii, the corresponding probability density functions
fξij and fξii can be obtained. Then, the distance/similarity
between two set of coupled behaviors is converted to the
similarity measure between probability density functions, for
which the KL divergence is a suitable choice. Its formulation
for the discrete case is as follows:

DKL(fξii |fξij ) =
∑
m

fξii(m) log
fξii(m)

fξij (m)
(4)

In the same way, DKL(fξjj |fξji) reflects the similarity be-



tween the CHMMs λi and λj from the angle of the coupled

behaviors set {bn,j
IA}. Finally, the symmetric distance be-

tween the coupled behaviors of two particle groups of λi

and λj is defined as:

DKL(λi|λj) =
1

2
[DKL(fξii |fξij ) + DKL(fξjj |fξji)] (5)

By calculating the similarities between particle groups, hi-
erarchical clustering [15] is used on the basis of the similarity
matrix to reveal the coupling structure in a hierarchical way,
which is expected to make a full-scale modeling and can re-
flect different levels of couplings between behaviors.

4.2 Quantitative Analysis: Hierarchical Mod-
eling of Coupled Behaviors

After the qualitative analysis of hierarchically grouping
the investors and their corresponding behaviors. For the
coupled behaviors of each group in different levels, we can
learn the corresponding CHMM (for further details, please
refer to [4, 3]). Then these CHMMs are the quantitative
models that capture the couplings between the behaviors
and provide helpful information for further anomaly detec-
tion.

4.3 The Anomaly Detection Algorithm
After hierarchically grouping (HG) of all the investors and

quantitatively modeling their coupled behaviors in multi-
level groups, we are also able to detect the abnormal coupled
behaviors. Algorithm 3 illustrates the process.

Algorithm 3 The Anomaly Detection Algorithm of HG-
based CBA

Input: A Training set {bi} (1 ≤ i ≤ N),
A Testing set {bk} (1 ≤ k ≤ M),
An Initial Grouping {PGl},
A Threshold Th0.

Output: An anomaly set A.
1: for all Particle group PGl in the Training set do
2: Construct its interval activity behavioral sequences

{b1,PGl
IA ,b

2,PGl
IA , · · · ,b

N,PGl
IA }.

3: end for
4: Hierarchically cluster the Particle group {PGl} and gen-

erate a hierarchical grouping {Gl
′ };

5: for all Groups {Gl
′ } in the Training set do

6: Train the corresponding CHMM λG
l
′ for each group’s

behaviors {b1,Gl′
IA ,b

2,Gl′
IA , · · · ,b

N,Gl′
IA }.

7: end for
8: for all Groups {Gl

′ } in the Testing set do
9: Construct its interval activity behavioral sequences

{b1,G
l
′

IA ,b
2,G

l
′

IA , · · · ,b
M,G

l
′

IA }
10: Calculate their likelihood p(b

k,G
l
′

IA |λG
l
′ ) given the

corresponding model.
11: end for
12: for all Trading day k in the testing set, do

13: we choose Lk = arg min
l

{p(b
k,G

l
′

IA |λG
l
′ )}

14: if Lk < Th0 then
15: bk → A
16: end if
17: end for

5. EXPERIMENTS

5.1 Experimental Data
Our algorithms are tested on a real data set from a ma-

jor Asian stock exchange. The tick data covers 388 valid
trading days from 1 June 2004 to 31 December 2005. It
consists of 58333 traders, and 174416 buy orders, 178464
sell orders, and 189148 trades. The data is partitioned into
two sets suggested by domain experts. The training data set
is extracted from the transactions from 1 June 2004 to 31
December 2004 and those transactions associated with the
identified alerts is filtered. Models are trained on such la-
beled normal data to capture the characteristics in so-called
‘normal’ coupled trading behaviors. The test set consists
of the remaining transactional data and is made up of both
normal and abnormal coupled trading behaviors. For eval-
uating the performance of the proposed approaches, true
positive TP , true negative TN , false positive FP and false
negative FN are counted in terms of treating the abnormal
cases as the positive class. Then four generally accepted
measures, accuracy ( TP+TN

TP+FN+FP+TN
), precision ( TP

TP+FP
),

recall ( TP
TP+FN

), and specificity ( TN
FP+TN

) are adopted as the
technical performance measures.

5.2 The Performance of the HC-based Frame-
work

We tested the HC-based CBA framework using the RDN
model (denoted as ‘CBA-RDN’) on the test data set and
compared it to the CHMM-based CBA framework (denoted
as ‘CBA-CHMM’)2. Figure 4 shows the technical perfor-
mance. We vary the threshold Th0 in Algorithm 2 for de-
tecting different numbers of anomalies and compare the cor-
responding performance for both the algorithms. By do-
ing this, we expect to provide a comprehensive compari-
son without considering the influence of the threshold. The
horizontal axis (P-Num) stands for the number of detected
group-based abnormal behaviors (i.e., the number of trading
days with abnormal coupled behaviors), and the vertical axis
represents the values of technical measures (accuracy, preci-
sion, recall or specificity). Figure 4 shows the four technical
measures of the HC-based and CHMM-based CBA frame-
works. Generally speaking, the former performs better than
the latter in terms of all the metrics. For instance, the
precision3 of the CBA-RDN framework of P − num = 45
is 0.38 while that of the CBA-HMM framework is 0.28,
which improves the precision of 35% higher than that of the
CHMM-based framework. With respect to other measures,
the CBA-RDN has better results as well, which proves that
the HC-based CBA framework can characterize the coupled
behaviors with more comprehensive information than the
CHMM-based framework. This may lead to better anomaly
detection performance to some extent.

5.3 The Performance of the HG-based Frame-
work

For the HG-based framework, here we study seven variant
strategies for detecting abnormal coupled behaviors.

2The performance results are the averaged values of different
time sliding windows [4].
3The precision looks very low, since we use the alerts from
the market surveillance system as the benchmark, which is
known with high overall false positive rate.



hhhhhhhhModels
P-Num

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

CBA-RDN 0.88 0.88 0.88 0.87 0.87 0.87 0.86 0.86 0.86 0.85 0.85 0.85 0.84 0.84 0.84 0.83

CBA-CHMM 0.85 0.85 0.85 0.85 0.84 0.84 0.84 0.84 0.83 0.83 0.82 0.82 0.81 0.81 0.81 0.80

(a) Accuracy
hhhhhhhhModels

P-Num
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

CBA-RDN 0.38 0.39 0.38 0.37 0.36 0.36 0.35 0.34 0.34 0.33 0.33 0.32 0.31 0.31 0.30 0.29

CBA-CHMM 0.28 0.28 0.28 0.28 0.27 0.26 0.26 0.26 0.26 0.25 0.24 0.24 0.23 0.23 0.23 0.22

(b) Precision
hhhhhhhhModels

P-Num
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

CBA-RDN 0.92 0.91 0.91 0.90 0.90 0.90 0.89 0.89 0.88 0.88 0.88 0.87 0.87 0.86 0.86 0.85

CBA-CHMM 0.90 0.90 0.89 0.89 0.89 0.88 0.88 0.87 0.87 0.87 0.86 0.86 0.85 0.85 0.84 0.84

(c) Specificity
hhhhhhhhModels

P-Num
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

CBA-RDN 0.52 0.55 0.56 0.56 0.56 0.57 0.58 0.58 0.58 0.58 0.59 0.59 0.59 0.60 0.60 0.60

CBA-CHMM 0.39 0.40 0.41 0.42 0.42 0.42 0.43 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.45 0.45

(d) Recall

Figure 4: Technical Performance of the Two Frameworks

• CBA-CHMM: The behaviors of all the investors are
collected together to construct corresponding coupled
behavior sequences and a CHMM is trained to rep-
resent the characteristics of the group-based coupled
behaviors.

• CBA-PG, CBA-PG3: The investors are divided into
different particle groups based on different predefined
domain knowledge and then their behaviors are an-
alyzed separately for each particle group. A set of
CHMMs are trained for each particle group.

• CBA-PG2: The investors are randomly divided into
different particle groups. The other processing is the
same as that of CBA-PG and CBA-PG3.

• CBA-HG, CBA-HG3: On top of the CBA-PG and
CBA-PG3 respectively, the proposed hierarchical clus-
tering method is adopted to provide a comprehensive
profile of the investors’ behaviors. Consequently, the
behaviors are analyzed in different scales and the cor-
responding CHMMs for each group is set up, which is
expected for more accurate analysis of anomalies.

• CBA-HG2: On the basis of CBA-PG2, particle groups
are randomly merged into a hierarchical grouping struc-
ture. The other parts of processing are the same as
CBA-HG and CBA-HG3.

We tested the above seven strategies on the test dataset
by setting various window sizes (winsize) and the results
reported here are the averaged ones over different window
sizes. Figure 5 shows their technical performance. The
horizontal axis and the vertical axis have the same mean-
ings in Figure 4. The performance of CBA-PG, CBA-
PG2 and CBA-PG3 are worse than CBA-CHMM. This is
because dividing investors into small particle groups only
models the couplings within these groups and ignores the
coupled relationships between particle groups. By contrast,
while CBA-HG and CBA-HG3 perform better than other
schemes in most cases, CBA-HG2 does not. A possible ex-
planation is that the former two schemes integrate a hierar-
chical group structure based on reasonable similarity mea-
sures rather than a random merger. CBA-HG generally per-
forms best out of the three strategies at general, which indi-
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Figure 5: Comparison of the Seven Strategies

cates suitable domain knowledge and a reasonable hierarchi-
cal structure is valuable for a more accurate grouping and
corresponding anomaly detection of the investors. Although
the technical measures of CBA-HG is not much higher than
those of other strategies when P-Num is small (smaller than
45), they are significantly higher as P-Num increases. For
instance, as shown in Figure 5, when P − Num = 40, the
precision of CBA-HG is 0.33, while that of CBA-PG is 0.24
and that of CBA-CHMM is 0.25. The precision of CBA-
HG can be 32% higher than that of CBA-CHMM. It reveals
that our proposed framework performs best and is most sta-
ble than other strategies.

5.4 Comparisons of the Three Frameworks
The above experiments show the performance of the two

variant CBA frameworks respectively. To further compare
their performance, Figure 6 shows the performance compar-
ison of the two variant frameworks and the CHMM-based
framework. As can be seen from the figure, the CBA-HG
framework obtains the best performance in terms of all the
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Figure 6: Comparison of the Three Frameworks

technical measures. This is because the proper domain knowl-
edge directs us to model proper and more comprehensive
couplings between behaviors for anomaly detection. In ad-
dition, this proves integrating the proper domain knowledge
for CBA could enhance its performance to some extent. The
CBA-RDN performs better than the CBA-CHMM frame-
work, which may benefit from the modeling of more compre-
hensive coupling relationships. When there is no prior do-
main knowledge, it is reasonable to assume hybrid couplings
between the behaviors and give a comprehensive modeling.
This method is still advantageous compared to the CBA-
CHMM framework, which aggregates all investors’ behav-
iors and may omit important coupled relationships. To sum
up, the HC-based CBA considers hybrid couplings between
behaviors for modeling is helpful when there is little knowl-
edge about the coupling structures while HG-based CBA
could provide better analysis of the coupled behaviors when
the proper domain knowledge is set up for the underlying
couplings.

6. CONCLUSIONS
This paper examined a challenging issue of detecting group-

based market manipulations from the perspective of cou-
pled behavior analysis. In order to analyze the rich cou-
plings among behaviors and detect anomalies more accu-
rately, we proposed a three-stage general CBA framework
for abnormal behavior detection, which consists of qualita-
tive analysis, quantitative analysis and anomaly detection
stages. To cater for different situations of prior domain
knowledge about the couplings, two variant implementation
approaches have been proposed. The experimental results
on a real-world data set in a major Asian stock market ex-
hibited that the proposed approaches generally outperform
the previous CHMM-based one by taking the miscellaneous
alerts fired in the market surveillance system as a bench-
mark. In addition, we also found that integrating domain
knowledge into abnormal coupled behavior detection can sig-
nificantly improve the performance while detecting anoma-
lies without additional domain knowledge is still possible.
Future research could be on exploration of how to integrate

more sophisticated domain knowledge for CBA and consid-
ering other application domains.
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